INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Electrochromic Materials: Structural Design and Multispectral Modulation Applications |
CAI Xuanhao, LOU Xing, QIN Jining, ZHOU Han*
|
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract Electrochromic materials are capable of change reversibly inoptical properties under an applied electric field. Due to controllable response, low energy consumption and multispectral modulation, the development potential of electrochromic materials for applications in optical and thermal management is enormous. However, conventional electrochromic materials have some noticeable problems such as slow regulation, single color change, and narrow regulation band, which hinder the further development of electrochromic technology. In recent years, nanostructured electrochromic materials have achieved advantages such as improved cycling performance and flexible response spectral selectivity, becoming an effective modulation method and attracting significant attention from researchers. This review summarizes the basic structure and research progress of structural design based on mechanisms such as diffusion kinetics, structural color design and localized surface plasmon resonance of electrochromic devices (ECDs) in recent years. It also discussed the potential applications of multispectral modulation ECDs, and finally proposed the main challenges of electrochromic materials and the future development directions.
|
Published: 10 November 2024
Online: 2024-11-11
|
|
Fund:National Natural Science Foundation of China (52172120). |
|
|
1 Hasani A, Quyet Van L, Thang Phan N, et al. Scientific Reports, 2017, 7(1), 13258. 2 Deb S K. Applied Optics, 1969, 8(101), 192. 3 Schirmer O F, Wittwer V, Baur G. Journal of the Electrochemical Society, 1977, 124(5), 749. 4 Burke L D, Murphy O J. Journal of Electroanalytical Chemistry, 1980, 109(1), 373. 5 Pande G K, Kim N, Choi J H, et al. Solar Energy Materials and Solar Cells, 2019, 197, 25. 6 Wei H, Gu J, Ren F, et al. Small, 2021, 17(35), 2100446. 7 Cong S, Geng F, Zhao Z. Advanced Materials, 2016, 28(47), 10518. 8 Thongpan W, Louloudakis D, Pooseekheaw P, et al. Materials Letters, 2019, 257, 126747. 9 Kadam A V. Journal of Applied Electrochemistry, 2017, 47(3), 335. 10 Wang Z, Wang X, Cong S, et al. Nature Communications, 2020, 11(1), 302. 11 Zhang W, Li H, Hopmann E, et al. Nanophotonics, 2021, 10(2), 825. 12 Nuroldayeva G, Balanay M P. Polymers, 2023, 15(13), 2924. 13 Gong H, Li W, Fu G, et al. Journal of Materials Chemistry A, 2022, 10(12), 6269. 14 Dong W, Lv Y, Zhang N, et al. Journal of Materials Chemistry C, 2017, 5(33), 8408. 15 Ortiz J, Acosta D, Magana C. Journal of Solid State Electrochemistry, 2022, 26(8), 1667. 16 Roldan R, Romanyuk Y E. Journal of the Electrochemical Society, 2016, 163(8), E235. 17 Rajan K P, Neff V D. Journal of Physical Chemistry, 1982, 86(22), 4361. 18 Wang Y, Zeng J, Zhou Z, et al. Applied Surface Science, 2022, 573, 151603. 19 Cai G F, Wang X L, Zhou D, et al. RSC Advances, 2013, 3(19), 6896. 20 Cai G F, Tu J P, Zhou D, et al. Solar Energy Materials and Solar Cells, 2014, 124, 103. 21 Pan J, Wang Y, Zheng R, et al. Journal of Materials Chemistry A, 2019, 7(23), 13956. 22 Zhang X, Dou S, Li W, et al. Electrochimica Acta, 2019, 297, 223. 23 Shi Y, Sun M, Zhang Y, et al. Solar Energy Materials and Solar Cells, 2020, 212, 110579. 24 De Rooij D M R. Anti-Corrosion Methods and Materials, 2003, 50(5), 1. 25 Sun J, Bhushan B, Tong J. RSC Advances, 2013, 3(35), 14862. 26 Kim Y, Moon C W, Kim I S, et al. Chemical Communications, 2022, 58(86), 12014. 27 Han M G, Heo C J, Shim H, et al. Advanced Optical Materials, 2014, 2(6), 535. 28 Chen K, He J, Zhang D, et al. Nano Letters, 2021, 21(10), 4500. 29 Xiao L, Lv Y, Lin J, et al. Advanced Optical Materials, 2018, 6(1), 1700791. 30 Kuno T, Matsumura Y, Nakabayashi K, et al. Angewandte Chemie International Edition, 2016, 55(7), 2503. 31 Ran X, Ren J, Zhang S, et al. ACS applied Materials & Interfaces, 2023, 15(35), 41763. 32 Qu H Y, Wang J, Montero J, et al. Journal of Applied Physics, 2021, 129(12), 123105. 33 Willets K A, Van Duyne R P. Annual Review of Physical Chemistry, 2007, 58, 267. 34 Agrawal A, Johns R W, Milliron D J. Annual Review of Materials Research, 2017, 47(1), 1. 35 Jiang N, Zhuo X, Wang J. Chemical Reviews, 2018, 118(6), 3054.. 36 Deonikar V G, Puguan J M C, Kim H. Acta Materialia, 2021, 207, 116693. 37 Zydlewski B Z, Lu H C, Celio H, et al. Journal of Physical Chemistry C, 2022, 126(34), 14537. 38 Peng J, Jeong H H, Smith M, et al. Advanced Science, 2021, 8(2), 2002419. 39 Agrawal A, Cho S H, Zandi O, et al. Chemical Reviews, 2018, 118(6), 3121. 40 Tsuboi A, Nakamura K, Kobayashi N. Advanced Materials, 2013, 25(23), 3197. 41 Unser S, Bruzas I, He J, et al. Sensors, 2015, 15(7), 15684.. 42 Khandelwal H, Schenning A P H J, Debije M G. Advanced Energy Materials, 2017, 7(14), 1602209. 43 Thummavichai K, Xia Y, Zhu Y. Progress in Materials Science, 2017, 88, 281. 44 Bai T, Li W, Fu G, et al. ACS Applied Materials & Interfaces, 2022, 14(46), 52193. 45 Rao Y, Dai J, Sui C, et al. ACS Energy Letters, 2021, 6(11), 3906. 46 Wang L, Zhou J, Liang J, et al. Applied Surface Science, 2013, 280, 151. 47 Chandrasekhar P, Zay B J, Lawrence D, et al. Journal of Applied Polymer Science, 2014, 131(19), 40850. 48 Chandrasekhar P, Zay B J, Birur G C, et al. Advanced Functional Materials, 2002, 12(2), 95. 49 Chein Sheng Ly K, Zhang H, Liu X, et al. Journal of the American Ceramic Society, 2021, 104(5), 2143. 50 Zhuang Y, Wang L, Lv Y, et al. Advanced Functional Materials, 2018, 28(8), 1705769. 51 Song S, Hao T, Wang B, et al. Advanced Optical Materials, 2023, DOI.ORG/10.1002/adom.202301065. 52 Lu L, Wang K, Wu H, et al. Chemical Science, 2021, 12(20), 7058. 53 Jeon S, Lee S E, Kim W, et al. Nanophotonics, 2023, 12(15), 3199. 54 Wu N, Ma L, Zhao S, et al. Solar Energy Materials and Solar Cells, 2019, 195, 114. 55 Ergoktas M S, Bakan G, Kovalska E, et al. Nature Photonics, 2021, 15(7), 493. |
|
|
|