POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
New Progress in Research on Anti-penetration and Protection Mechanism of Spray Polyurea and Its Fiber Composites |
YAN Shuai1, LYU Ping1, HUANG Weibo1,2,*, ZHANG Rui1, WANG Xu1, WANG Wenbin1, JU Jiahui2
|
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266400, Shandong, China 2 Qingdao Shamu Advanced Material Co., Ltd., Qingdao 266109, Shandong, China |
|
|
Abstract Under the act of high-speed punching and cutting of the intruder, helmets and bulletproof vests and other protective equipment deformation and even penetration phenomenon, and the past protective equipment to metal, ceramic-based, although good performance in protection, but the greater impact on the agility of personnel, so lightweight has become an important indicator of the design of protective equipment. The properties of spray polyurea and high-performance fibers are light and strong enough to meet the requirements of protective substrates, so the potential of spray polyurea and fibers as substrates for making protective equipment is huge. This paper starts from the structural characteristics of spray polyurea micro-phase separation, and describes the influence of soft and hard segments in the molecular chain and the presence of hydrogen bonding on the material properties. The dynamic response of spray polyurea is introduced, and it is analyzed that the spray polyurea can maintain the performance stability under wide strain rate range. The ballistic experiments show that the sprayed polyurea will change from rubbery state to glassy state when subjected to high-speed punching and cutting by the intruder, which has an increasing effect on the ballistic limit; the addition of fibers can optimize the structural integrity of the protective equipment, and the expansion of the damage area of the composite material proves the increase of the energy dissipation level. Finally, we summarize and analyze the anti-penetration mechanism of sprayed polyurea from the aspects of rearrangement crystallization of soft and hard segments and hydrogen bonding, and point out the important difficulties and urgent problems to be solved in the formation of composite materials between sprayed polyurea and fibers.
|
Published: 10 October 2024
Online: 2024-10-23
|
|
|
|
1 Lyu P, Fang Z Q, Wang X, et al. Materials, 2022, 15(7), 2607. 2 Liu J Y, Dong Y X, An X Y, et al. Defence Technology, 2021, 17(2), 315. 3 Huang W B. Spray polyurea elastomer technology, Chemical Industry Press, China, 2005, pp.17 (in Chinese). 黄微波. 喷涂聚脲弹性体技术, 化学工业出版社, 2005, pp.17. 4 Zhang R, Huang W B, Lyu P, et al. Polymers, 2022, 14(13), 2670. 5 Feng J H, Dong Q, Zhang L C, et al. Chinese Journal of Energetic Materials, 2020, 28(4), 277 (in Chinese). 冯加和, 董奇, 张刘成, 等. 含能材料, 2020, 28(4), 277. 6 Sun F, Qu Y, Xu C. Acta Armamentarii, 2018, 39(11), 2249 (in Chinese). 孙非, 曲一, 徐诚. 兵工学报, 2018, 39(11), 2249. 7 Zhang Q Y, Qin Z G, Yan R S, et al. Composite Structures, 2021, 266, 113806. 8 Shi B. Ordnance Material Science and Engineering, 2021, 44(6), 51 (in Chinese). 师博. 兵器材料科学与工程, 2021, 44(6), 51. 9 Goyal C, Anudeep A V, Sarweswaran R. Materials Today: Proceedings, 2020, 33(7), 4533. 10 Holzworth K, Jia Z, Amirkhizi A V, et al. Polymer, 2013, 54(12), 3079. 11 Li T, Zhang C, Xie Z N, et al. Polymer, 2018, 145, 261. 12 Huang W B, Zhang R, Wang X, et al. Polymers, 2022, 14(17), 3458. 13 Zhang M, Cui Z W, Catherine L B. Journal of Polymer Science Part B: Polymer Physics, 2018, 56(23), 1552. 14 Yildirim E, Yurtsever M. Computational and Theoretical Chemistry, 2014, 1035, 28. 15 Li S J, Yan J, Du S G, et al. Materials Reports, 2020, 34(21), 21205 (in Chinese). 李少杰, 闫军, 杜仕国, 等. 材料导报, 2020, 34(21), 21205. 16 Iqbal N, Tripathi M, Parthasarathy S, et al. ChemistrySelect, 2018, 3(7), 1976. 17 Pangon A, Dillon G P, Runt J. Polymer, 2014, 55(7), 1837. 18 Pang B, Zhang J Z, Pang M L, et al. Polymer Chemistry, 2018, 9(7), 869. 19 Liu M H, Oswald J. Polymer, 2019, 176, 1. 20 Li T, Zheng T, Han J, et al. Polymers, 2019, 11(5), 838. 21 Ramirez B J, Gupta V. International Journal of Mechanical Sciences, 2019, 150, 29. 22 Wang H, Deng X M, Wu H J, et al. Defence Technology, 2019, 15(6), 875. 23 Xiao Y C, Yin J L, Zhang X W, et al. Polymer Testing, 2022, 109, 107531. 24 Do S, Stepp S, Youssef G. Materials Today Communications, 2020, 25, 101464. 25 Miao Y G, Zhang H N, He H, et al. Composite Structures, 2019, 222, 110923. 26 Jia Z J, Wang S, Chen Y X, et al. Acta Armamentarii, 2021, 42(S1), 151 (in Chinese). 贾子健, 王舒, 陈亚旭, 等. 兵工学报, 2021, 42(S1), 151. 27 Wang B, Chen Y S, Xu H F, et al. Protective Engineering, 2018, 40(5), 8 (in Chinese). 王波, 陈艺顺, 许宏发, 等. 防护工程, 2018, 40(5), 8. 28 Yao X H, Zhang L H, Zhang X Q, et al. Acta Aeronautica et Astronautica Sinica, 2015, 36(7), 2236 (in Chinese). 姚小虎, 张龙辉, 张晓晴, 等. 航空学报, 2015, 36(7), 2236. 29 Shahi V, Alizadeh V, Amirkhizi A V. Mechanics of Time-Dependent Materials, 2020, 25(3), 447. 30 Zhang R, Huang W B, Lyu P, et al. Advanced Engineering Sciences, 2022, 54(5), 218 (in Chinese). 张锐, 黄微波, 吕平, 等. 工程科学与技术, 2022, 54(5), 218. 31 Fang Z Q. Study on explosion protection performance of blast mitigation polyurea and its composite coating steel plate. Master's Thesis, Qingdao University of Technology, China, 2022 (in Chinese). 方志强. 抗爆聚脲及其复合涂层钢板爆炸防护性能研究. 硕士学位论文, 青岛理工大学, 2022. 32 Nantasetphong W, Jia Z, Hasan M A, et al. Experimental Mechanics, 2018, 58(8), 1311. 33 Cai J F, Li S J, Yan J, et al. Journal of Ordnance Equipment Engineering, 2021, 42(8), 112 (in Chinese). 蔡军锋, 李少杰, 闫军, 等. 兵器装备工程学报, 2021, 42(8), 112. 34 Li H L, Wang B, Ding S, et al. Journal of Unmanned Undersea Systems, 2022, 30(3), 354 (in Chinese). 李海龙, 王博, 丁松, 等. 水下无人系统学报, 2022, 30(3), 354. 35 Mao L W, Wan C Z, Chen C H, et al. Transactions of Beijing Institute of Technology, 2022, 42(10), 1017 (in Chinese). 毛柳伟, 万昌召, 陈长海, 等. 北京理工大学学报, 2022, 42(10), 1017. 36 Ouyang K F, Yao X, Yang Y, et al. Protective Engineering, 2021, 43(4), 6 (in Chinese). 欧阳科峰, 姚新, 杨阳, 等. 防护工程, 2021, 43(4), 6. 37 Moradi L G, Davidson J S, Dinan R J. Journal of Performance of Constructed Facilities, 2009, 23(2), 72. 38 Zhang Q Y, Jin X Q, Zheng Y X, et al. Engineering Mechanics, 2016, 33(4), 205 (in Chinese). 张青艳, 靳晓庆, 郑宇轩, 等. 工程力学, 2016, 33(4), 205. 39 Roland C M, Fragiadakis D, Gamache R M, et al. Philosophical Magazine, 2013, 93(5), 468. 40 Zhang P, Wang Z J, Zhao P D, et al. Thin-Walled Structures, 2019, 144, 106342. 41 Sun P F, Lyu P, Wang X, et al. New Chemical Materials, 2023, 51(1), 156 (in Chinese). 孙鹏飞, 吕平, 王旭, 等. 化工新型材料, 2023, 51(1), 156. 42 Zhang R, Huang W B, Fang Z Q, et al. Journal of Qingdao University of Technology, 2021, 42(3), 22 (in Chinese). 张锐, 黄微波, 方志强, 等. 青岛理工大学学报, 2021, 42(3), 22. 43 Mateusz B, Joanna A, Adam P, et al. Composites Part B, 2021, 225, 109286. 44 Luo X, Yu K J, Wang M L, et al. New Chemical Materials, 2017, 45(7), 90 (in Chinese). 罗霞, 俞科静, 王梦蕾, 等. 化工新型材料, 2017, 45(7), 90. 45 Sazhenkov N A, Semenov S V, Voronov L V, et al. Procedia Structural Integrity, 2020, 28, 1572. 46 Zheng C Y, Zong C, Zhang D T, et al. Journal of Materials Science and Engineering, 2022, 40(2), 269 (in Chinese). 郑成燕, 宗晟, 张典堂, 等. 材料科学与工程学报, 2022, 40(2), 269. 47 Grujicic M, Entremont B P, Pandurangan B, et al. Journal of Materials Engineering & Performance, 2012, 21(10), 2024. 48 Iqbal N, Tripathi M, Parthasarathy S, et al. RSC Advances, 2016, 6, 109706. 49 Wu G, Wang X, Ji C, et al. Journal of Constructional Steel Research, 2022, 190, 107126. 50 Zhang L, Cheng L Y, Ji C, et al. Initiators & Pyrotechnics, 2022(3), 21 (in Chinese). 张龙, 程良玉, 纪冲, 等. 火工品, 2022(3), 21. 51 Andreas J B. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(3), 328. 52 Hu J Y. Research on low-velocity impact properties and damage mechanism of woven fabric composite. Master's Thesis, Harbin Institute of Technology, China, 2010 (in Chinese). 胡靖元. 织物复合材料低速冲击特性与损伤机理研究. 硕士学位论文, 哈尔滨工业大学, 2010. |
|
|
|