RESEARCH PAPER |
|
|
|
|
|
Effect of Feeding Rate on the Structure and Storage Properties of TiO2/RGO Composites |
YANG Shaobin, ZHANG Qin, SHEN Ding, DONG Wei, LIU Chao
|
College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000 |
|
|
Abstract With ethanol as solvent and Ti(OBu)4 as precursor, the process for preparing TiO2/reduced graphene oxide composite (TiO2/RGO) by sol-gel method and heat treatment was studied. The effect of Ti(OBu)4 feeding rate on the morphology, structure and storage properties of TiO2/RGO in the sol-gel process was studied. Results showed that the TiO2/RGO composite was composed of anatase TiO2 and reduced graphene oxide, and TiO2 concentrated at the edge of the RGO layer. Electrochemical test results showed that the initial discharge capacity and coulombic efficiency increased first and then decreased with the increase of cycle times. When the feeding rate is 1.0 mL/min, the TiO2/RGO composites possessed good performance of sodium storage, as the initial discharge capacity and initial coulombic efficiency were 140.14 mAh·g-1 and 27.92% at a current rate of 1C (1C=20 mA·g-1), as well as good cycle and rate performance.
|
Published:
Online: 2018-05-08
|
|
|
|
1 Yang Z H. Synthesis and electrochemical performance of Na2Ti3O7@CNT anode materials for sodium-ion batteries[D]. Suzhou: Soochow University,2015(in Chinese). 杨中华. 钠离子电池负极材料Na2Ti3O7@CNT的制备及电化学性能研究[D]. 苏州: 苏州大学,2015. 2 Bartunek V, Huber S, Sedmidubsky D, et al. CoO and Co3O4 nanoparticles with a tunable particle size[J]. Ceram Int,2014,40(8):12591. 3 Ge D H, Geng H B, Wang J Q, et al. Porous nano-structure Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries[J]. Nanoscale,2014,6(16):9689. 4 Wang L, Pumera M. Residual metallic impurities within carbon nanotubes play a dominant role in supposedly “metal-free” oxygen reduction reactions[J]. Chem Commun,2014,50(84):12662. 5 Shi X, Zhang Z, Fu Y, et al. Self-template synthesis of nitrogen-doped porous carbon derived from zeolitic imidazolate framework-8 as an anode for sodium ion batteries[J]. Mater Lett,2015,161:332. 6 Buchholz D, Moretti A, Kloepsch R, et al. Toward Na-ion batte-ries-synthesis and characterization of a novel high capacity Na ion intercalation material[J]. Chem Mater,2013,25(2):142. 7 Pan H, Hu Y S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy Environ Sci,2013,6:2338. 8 Slater M D, Kim D, Lee E, et al. Sodium-ion batteries[J]. Adv Funct Mater,2013,23:947. 9 Li T, Long Z H, Zhang D H. Synthesis and electrochemical properties of Fe2O3/rGO nanocomposites as lithium and sodium storage materials[J]. Acta Physico-Chimica Sinica,2016,32(2):573(in Chinese). 李婷, 龙志辉, 张道洪. Fe2O3/rGO纳米复合物的制备及其储锂和储钠性能[J]. 物理化学学报,2016,32(2):573. 10 He H N, Wang H Y, Tang Y G, et al. Current studies of anode materials for sodium-ion battery[J]. Prog Chem,2014(4):572(in Chinese). 何菡娜, 王海燕, 唐有根, 等. 钠离子电池负极材料[J]. 化学进展,2014(4):572. 11 Chen Y, Zhang Z L, Sui Z J, et al. Preparation and electrochemical performance of Ni(OH)2 nanowires/three-dimensional graphene composite materials[J]. Acta Physico-Chimica Sinica,2015,31(6):1105(in Chinese). 陈阳, 张梓澜, 隋志军, 等. 氢氧化镍纳米线/三维石墨烯复合材料的制备及其电化学性能[J]. 物理化学学报,2015,31(6):1105. 12 Xu J, Yang D Z, Liao X Z, et al. Electrochemical performances of reduced graphene oxide/titanium dioxide composites for sodium-ion batteries[J]. Acta Physico-Chimica Sinica,2015,31(5):913(in Chinese). 许婧, 杨德志, 廖小珍, 等. 还原氧化石墨烯/TiO2复合材料在钠离子电池中的电化学性能[J].物理化学学报,2015,31(5):913. 13 Yang Y L, Xin X L, Hu D Q, et al. Analysis on factors affecting preparation of TiO2 gel by sol-gel method[J]. J Beijing Technology and Business University:Nat Sci Ed,2007,25(3):9(in Chinese). 杨依隆, 辛秀兰, 胡代强, 等. 溶胶-凝胶法制备TiO2凝胶的影响因素及方法改进[J]. 北京工商大学学报:自然科学版,2007,25(3):9. 14 Zhang J F, Lu J, Yang X Y, et al. Synthesis of porous carbon Nanosheets for application in sodium-ion battery[J]. J Electroche-mistry,2015,21(6):548(in Chinese). 张京飞, 陆静, 杨晓宇, 等. 多孔碳纳米片的合成及在钠离子电池中的应用[J]. 电化学,2015,21(6):548. 15 Hui Xiong, Michael D Slater, Mahalingam Balasubramanian, et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batte-ries[J]. Phys Chem Lett,2011,2:2560. 16 Qin Wei. The microwave-assisted synthesis of metal sulfide-graphene composites for the anode of sodium-ion batteries[D]. Shanghai: East China Normal University,2016(in Chinese). 秦伟. 金属硫化物-石墨烯复合物的微波法制备及其在钠离子电池负极的应用[D]. 上海: 华东师范大学,2016. |
|
|
|