METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
The Latest Research Progress of Extreme High-speed Laser Material Deposition:Key Technical Features and Advantages, Equipment Development and Technical Parameters |
LIU Chunquan1,*, XIONG Fen1,*, PENG Longsheng2, HUANG Wei2, LIN Yinghua3
|
1 School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, Hunan, China 2 Hunan Lifang Roll Co., Ltd.,(Hunan Advanced Manufacturing Engineering Technology Research Center of High Wear-resistant Alloy Materials), Hengyang 421681, Hunan, China 3 School of Mechanical Engineering, University of South School, Hengyang 421001, Hunan, China |
|
|
Abstract Extreme high-speed laser material deposition technology is a newly developed surface coating technology in recent years. The essence is that by changing the melting position of the powder, the powder intersects with the laser above the workpiece and melting occurs, and then uniformly coated on the surface of the workpiece, thus featuring high quality and efficiency, green and low cost, high quality and adaptability, low heat input and low laser power, low dilution rate and high performance. Firstly, it briefly introduces the key technology features and technical advantages of extreme high-speed laser material deposition, the development status of ultra-high-speed laser cladding equipment at home and abroad; secondly, the key technical parameters such as melting material, laser power, lap rate, spot diameter, melting speed, powder feeding volume and powder feeding pressure, which affect the final structure and properties of coatings prepared by ultra-high speed laser melting, are highlighted with the latest research results; finally, the quality inspection parameters of coatings prepared by ultra-high speed laser melting are introduced in detail, including the melting effect of melting layer thickness, bond strength, porosity, dilution rate, surface roughness, hardness, wear resistance and corrosion resistance, etc.. By summarizing the characteristics, advantages and key technical parameters of extreme high-speed laser material deposition technology, with a view to providing reference and guidance for further improvement and enhancement of extreme high-speed laser material deposition technology and more progress in equipment development.
|
Published: 10 September 2024
Online: 2024-09-30
|
|
Fund:Xiaohe Sci-Tech Talents Special Funding Under Hunan Provincial Sci-Tech Talents Sponsorship Program (2023TJ-X10), Hunan Natural Science Foundation (2023JJ50108), Special Science Popularization Thematic Project for the Construction of Innovative Provinces in Hunan Province (2023ZK4316), Hunan Provincial High Wear-resistant Alloy Materials Advanced Manufacturing Engineering Technology Research Center Innovation Capacity Improvement Project (2023ZYQ030), 2022 Hengyang ‘Xiaohe' Technology Talent Project (Hengshi Kexie Zi [2022] No. 68), Open Project of Science and Technology Innovation Platform of ‘Mechanical Engineering' Discipline in Hunan Province (KFKA2205), Hunan University of Technology Youth Self Education Project (2022HY007), and Hunan University Student Innovation and Entrepreneurship Project (S202411528078X, S202411528026). |
|
|
1 Yan Q, Yang K, Wang Z D, et al. Optics & Laser Technology, 2022, 149, 107823. 2 Yuan W, Li R, Zhu Y, et al. Surface and Coatings Technology, 2022, 438, 128363. 3 Jin L, Jiang K, Ren H, et al. International Journal of Electrochemical Science, 2022, 17(220920), 2. 4 Fu K, Zhong C, Zhang L, et al. Journal of Materials Research and Technology, 2023, 24, 1093. 5 Jy A, Bing B A, Hua K A, et al. Optics & Laser Technology, 2021, 144, 107431. 6 Du C, Hu L, Ren X, et al. Surface and Coatings Technology, 2021, 424, 127617 7 Nickels L. Metal Powder Report, 2020, 75(2), 79. 8 Meng L, Sheng P, Zeng X. Journal of Materials Research and Technology, 2022, 16, 1732. 9 Wang Y. Study on heat and mass transfer and solidification microstructure evolution of ultra high speed laser cladding. Master's Thesis, Shijiazhuang Tiedao University, China, 2022(in Chinese). 王瑶. 超高速激光熔覆传热传质与熔覆层凝固组织演变研究. 硕士学位论文, 石家庄铁道大学, 2022. 10 Schopphoven T, Gasser A, Backes G. Laser Technik Journal, 2017, 14(3), 45. 11 Zhu L D, Xue P S, Lan Q, et al. Optics and Laser Technology, 2021, 138, 106915. 12 Raykis O. Laser Technik Journal, 2017, 14(1), 28. 13 Guo Y M, Ye F X, Qi H. China Surface Engineering, 2022, 35(6), 39(in Chinese). 郭永明, 叶福兴, 祁航. 中国表面工程, 2022, 35(6), 39. 14 Huang X, Zhang J C, Lian G F, et al. Machine Tool & Hudraulics, 2021, 49(6), 151(in Chinese). 黄旭, 张家诚, 练国富, 等. 机床与液压, 2021, 49(6), 151. 15 Wu Y, Liu Y, Chen W J, et al. Electric Welding Machine, 2020, 50(3), 1(in Chinese). 吴影, 刘艳, 陈文静, 等. 电焊机, 2020, 50(3), 1. 16 Wu X H. Paper Equipment & Materials, 2022, 51(3), 79(in Chinese). 吴学宏. 造纸装备及材料, 2022, 51(3), 79. 17 Vogt S, Göbel M, Fu E. Journal of Manufacturing Science and Engineering, 2022, 144(4), 044501. 18 Liang Y, Liao Z Y, Zhang L L, et al. Optics & Laser Technology, 2023, 164, 109472. 19 Xu X, Lu H, Su Y, et al. Corrosion Science, 2022, 195, 109976. 20 Shen B, Du B, Wang M, et al. Frontiers in Materials, 2019, 6, 248. 21 Ge T, Chen L, Gu P, et al. Optics & Laser Technology, 2022, 150, 107919. 22 Liu M X, Li Z, Chang G R, et al. International Journal of Electrochemical Science, 2022, 17(220537), 2. 23 Yuan W, Li R, Chen Z, et al. Surface and Coatings Technology, 2021, 405, 126582. 24 Wang K, Du D, Liu G, et al. Corrosion Science, 2020, 176, 108922. 25 Xiao M, Gao H, Sun L, et al. Materials Letters, 2021, 297, 130002. 26 Wang Y Y, Niu Q, Yang G J, et al. Materials Research and Application, 2019, 13(3), 8(in Chinese). 王豫跃, 牛强, 杨冠军, 等. 材料研究与应用, 2019, 13(3), 8. 27 Constantin Häfner. Annual Report 2020, Fraunhofer-Institut für Lasertechnik ILT, Steinbachstraβe 15, 52074 Aachen, Germany, 2020. 28 More S R, Bhatt D V, Menghani J V. Materials Today:Proceedings, 2017, 4(9), 9902. 29 Yue K, Lian G, Feng M, et al. Metallurgical Research & Technology, 2022, 119(1), 113. 30 Li T, Zhang L, Bultel G G P, et al. Coatings, 2019, 9(12), 778. 31 Ren Y, Chang S, Wu Y, et al. Surface and Coatings Technology, 2022, 440, 128496. 32 Shen F, Tao W, Li L, et al. Applied Surface Science, 2020, 517, 146085. 33 Li T, Zhang L, Chen G, et al. Journal of Manufacturing Processes, 2022, 78, 265. 34 Sommer N, Stredak F, Böhm S. Coatings, 2021, 11(8), 952. 35 Lampa C, Smirnov I. Journal of Laser Applications, 2019, 31(2), 022511. 36 Schaible J, Sayk L, Schopphoven T, et al. Journal of Laser Applications, 2021, 33, 012021. 37 Asghar O, Yan L, Yasir M, et al. Coatings, 2020, 10, 638. 38 Song Y, Li X, Hu C, et al. Journal of Laser Applications, 2021, 33, 032019. 39 Xu X, Du J L, Luo K Y, et al. Surface and Coatings Technology, 2021, 422, 127500. 40 Wilms M B, Pirch N, Gökce B. Progress in Additive Manufacturing, 2023, 8, 159. 41 Li R, Yuan W, Yue H, et al. Optics & Laser Technology, 2022, 146, 107574. 42 Lou L Y, Zhang Y, Jia Y J, et al. Surface and Coatings Technology, 2020, 392, 125697. 43 Xu Q L, Zhang Y, Liu S H, et al. Surface and Coatings Technology, 2020, 398, 126093. 44 Zhang M, Gao P, Wang H. Conference Series, 2021, 1948, 012188. 45 Xu X, Lu H, Qiu J, et al. Journal of Manufacturing Processes, 2022, 75, 243. 46 Li L, Shen F, Zhou Y, et al. Journal of Laser Applications, 2019, 31, 042009. 47 Wu Z, Qian M, Brandt M, et al. JOM, 2020, 72, 4632. 48 Chen L, Zhang X, Wu Y, et al. Corrosion Science, 2022, 201, 110271. 49 Hu Z, Li Y, Lu B, et al. Optics & Laser Technology, 2022, 155, 108449. 50 Ren Y, Li L, Zhou Y, et al. Materials Letters, 2022, 315, 131962. 51 Bai Q, Li Q, Zhang J, et al. The International Journal of Advanced Manufacturing Technology, 2023, 125(7-8), 325. 52 Wang H, Zhang W, Peng Y, et al. Coatings, 2020, 10(3), 300. 53 Leung C L A, Marussi S, Atwood R C, et al. Nature Communications, 2018, 9, 1355. 54 Cui B, Liu S, Zhang F, et al. The International Journal of Advanced Manufacturing Technology, 2021, 119, 42. 55 Lou L Y, Li C X, Zhang Y, et al. Journal of Yanshan University, 2020, 44(2), 9(in Chinese). 娄丽艳, 李成新, 张煜, 等. 燕山大学学报, 2020, 44(2), 9. 56 Yin T Y, Zhang S, Wang Z Y, et al. Materials Chemistry and Physics, 2022, 28, 126191. 57 Schopphoven T, Gasser A, Wissenbach K, et al. Journal of Laser Applications, 2016, 28(2), 022501. 58 Liu H, Zhou Y. The International Journal of Advanced Manufacturing Technology, 2021, 112, 15. 59 Xu Z, Yuan J, Wu M, et al. Optics & Laser Technology, 2023, 158, 108850. 60 Song Y, Li X, Hu C, et al. Journal of Laser Applications, 2021, 33(3), 032019. 61 Xu S, Cai Q, Li G, et al. Optics & Laser Technology, 2022, 154, 108309. 62 Ding Y, Du C, Wang X, et al. Advanced Composites and Hybrid Materials, 2021, 4(1), 20. 63 Wang T, Dai S, Liao H, et al. Rapid Prototyping Journal, 2020, 26, 165. 64 Xu J, Rong Y, Huang Y, et al. Journal of Materials Processing Technology, 2018, 252, 72. 65 Wolff S J, Wang H, Gould B, et al. International Journal of Machine Tools and Manufacture, 2021, 166, 103743. 66 Hojjatzadeh S M H, Parab N D, Yan W, et al. Nature Communications, 2019, 10, 3088. 67 Lv F, Liang H, Xie D, et al. Journal of Alloys and Compounds, 2021, 85, 156866. 68 Tanigawa D, Funada Y, Abe N, et al. Optics & Laser Technology, 2018, 99, 32. 69 Song B, Hussain T, Voisey K T. Physics Procedia, 2016, 83, 70. 70 Li Z, Chai L, Tang Y, et al. Journal of Materials Research and Technology, 2023, 23, 204. 71 Li J, Zhu Z, Peng Y, et al. Optics & Laser Technology, 2022, 147, 107672. 72 Xiang K, Chai L, Zhang C, et al. Optics & Laser Technology, 2022, 145, 107518. 73 Liu X, Bi J, Meng Z, et al. Tribology International, 2021, 162, 107142. 74 Zhang Q, Han B, Li M, et al. Intermetallics, 2023, 153, 107795. 75 Hong S, Ma Q, Liu G, et al. Optics & Laser Technology, 2023, 157, 108678. 76 Zhang Z, Wang X, Zhang Q, et al. Optics & Laser Technology, 2019, 119, 105622. 77 Sun W, Huang X, Zhang J, et al. Friction, 2023. 78 Zhu Q, Liu Y, Zhang C. Materials Letters, 2022, 318, 132133. 79 Li Y, Shi Y. Optics & Laser Technology, 2021, 134, 106632. 80 Ding Y, Bi W, Zhong C, et al. Materials, 2022, 15(18), 6400. |
|
|
|