METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Effect of Contact Area on the Properties of H62/T2 Elastic Contact Current-carrying Friction Pair |
JIAO Jinlong1,2, YANG Zhenghai1,2,*, SHI Xuefei1,2, SONG Yingjian1,2, LI Wenbo1,2, SUN Lemin1,2
|
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China 2 National United Engineering Laboratory for Advanced Bearing Tribology, Luoyang 471023, Henan, China |
|
|
Abstract Aiming at the problem that the influence of contact conditions on the performance of electrical connectors under the contact hot-swap plug condition was unclear, the H62 wire/T2 plate elastic contact friction pair was used to carry out reciprocating sliding current-carrying friction experiments on the micro-sliding friction testing machine, and the influence of contact area on the friction and wear performance of H62/T2 current-carr-ying was studied. The experimental results show that under the condition of a given current of 2 A, 4 A and 6 A, with the increase of contact area, the friction coefficient stability parameter ε decreases, that is, the stability of the friction process increases, and the average friction coefficient and wear volume show an increasing trend. Under the condition of current of 2 A, when the arc radius increases from 1.5 mm to 5.5 mm, the current fluctuation decrease, the current carrying stability increase, and the current carrying efficiency increases from 98.26% to 99.73%. The wear of the friction pair presents the form of abrasive wear, adhesive wear and arc erosion coexisting and coupling, with the increase of contact area, arc erosion decreases, and mechanical wear is intensified by furrow and adhesion.
|
Published: 25 August 2024
Online: 2024-09-10
|
|
Fund:National Natural Science Foundation of China (U1804252,U1730130),the Key Scientific Research Project of Henan Province (22A430021). |
|
|
1 Ren W B, Du Y W, Cui L, et al. Wear, 2014, 321, 70. 2 Huang B, Li X B, Zeng Z, et al. Microelectronics Reliability, 2016, 66, 106. 3 Luo Y Y, Su J Y, Ren Y L. Electrical Measurement & Instrumentation, 2020, 57(17), 8 (in Chinese). 骆燕燕, 苏敬元, 任永隆. 电测与仪表, 2020, 57(17), 8. 4 Pan J, Zhang W, Zhang L B, et al. Journal of Mechanical Engineering, 2021, 57(10), 257 (in Chinese). 潘骏, 张雯, 张利彬, 等. 机械工程学报, 2021, 57(10), 257. 5 Xu L, Ling S, Lin Y, et al. Microelectronics Reliability, 2019, 100-101, 113348. 6 Sun G A, Yang Z H, Ni F, et al. Lubrication Engineering, 2021, 46(8), 49 (in Chinese). 孙高昂, 杨正海, 倪锋, 等. 润滑与密封, 2021, 46(8), 49. 7 Pompanon F, Laporte J, Fouvry S, et al. Wear, 2019, 426-427, 652. 8 Lv K H, Cheng X Z, Wu L X, et al. Failure Analysi and Prevention, 2023, 18(1), 37. 吕克洪, 程先哲, 吴林筱, 等. 失效分析与预防, 2023, 18(1), 37. 9 Yu X Y, Zhang L, Zhang X, et al. Materials Science and Engineering of Powder Metallurgy, 2022, 27(6), 648 (in Chinese). 于芯悦, 张雷, 张鑫, 等. 粉末冶金材料科学与工程, 2022, 27(6), 648. 10 Sun K, Diao D F. Carbon, 2020, 157, 113. 11 Xiao J K, Liu L M, Chao Z, et al. Wear, 2016, 368-369, 461. 12 Sung I H, Kim J W, Noh H J, et al. Tribology International, 2016, 95, 256. 13 Zhang Y Z, Yang Z H, Song K X, et al. Friction, 2013, 1(3), 259. 14 Zhao Y W, Sun L M. Materials Protection, 2021, 54(10), 97(in Chinese). 赵彦文, 孙乐民. 材料保护, 2021, 54(10), 97. 15 Guo F Y, Jiang G Q, Zhao R B, et al. Proceedings of the CSEE, 2009, 29(36), 113. 郭凤仪, 姜国强, 赵汝彬, 等. 中国电机工程学报, 2009, 29(36), 113. 16 Hui Y, Liu G M, Yan T, et al. Materials Protection, 2019, 52(8), 1 (in Chinese). 惠阳, 刘贵民, 闫涛, 等. 材料保护, 2019, 52(8), 1. 17 Guo F Y, Ma T L, Chen Z H, et al. Transactions of China Electrotechnical Society, 2009, 24(12), 18 (in Chinese). 郭凤仪, 马同立, 陈忠华, 等. 电工技术学报, 2009, 24(12), 18. 18 Ding T, Chen G X, Li Y M, et al. Tribology International, 2014, 79, 8. 19 Wang S B, Peng M J, Sun Y, et al. Materials Reports, 2020, 34(9), 117. 王塞北, 彭明军, 孙勇, 等. 材料导报, 2020, 34(9), 117. 20 Shi X F, Yang Z H, Zhang Y Z. Materials Reports, 2023, 37(5), 166(in Chinese). 史雪飞, 杨正海, 张永振. 材料导报, 2023, 37(5), 166. |
|
|
|