INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Effect of Mg-Al Additive on Microstructure and Properties of SiC-MgAl2O4 Materials |
WANG Mengqiang1, CHEN Liugang1, SUN Honggang2,*, DU Yihao2, SI Yaochen3, LI Hongxia1,2,3,*
|
1 Henan Key Laboratory of High Temperature Functional Ceramics, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China 2 State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039, Henan, China 3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract In order to explore the chromium-free refractories for coal gasification, SiC-MgAl2O4 materials were prepared using SiC particles and MgAl2O4 powder. Microstructure and properties of the composites with or without 4wt% Mg-Al alloy after heat-treating at temperature range of 500—1 450 ℃ under N2 gas flow were investigated. Explore the formation of low-dimensional phase in nitriding sintering of Mg-Al alloy to improve the performance of SiC-MgAl2O4 composite materials. The results show that the Mg-Al alloy reacted with N2 and O2 at 650—800 ℃, predominantly forming AlN and MgO. Honeycomb-like MgAl2O4 spinel was formed at 700 ℃ enhancing the bonding level between SiC aggregate and MgAl2O4 matrix and thus increasing the mechanical strength of the composites. The honeycomb-like MgAl2O4 spinel changed from honeycomb into rod shape at 900—1 300 ℃, and then into flake and granular MgAlON at 1 300—1 500 ℃. The changes in morphology and phase composition are accompanied by volume expansion, resulting in a slight decrease in the strength of the sample. The addition of Mg-Al alloy can improve the mechanical properties of SiC-MgAl2O4 by in-situ formation of spinel under low heat treatment.
|
Published: 25 August 2024
Online: 2024-09-10
|
|
Fund:National Natural Science Foundation of China(U21A2059). |
|
|
1 He J Y. Pollution characteristics, bioavailability and risk assessment of hexavalent chromium in soil. Master’s Thesis, Zhejiang University, China, 2015 (in Chinese). 何俊昱. 土壤六价铬的污染特性、生物可给性及风险评估. 硕士学位论文, 浙江大学, 2015. 2 Liu K Y, Guo Q H, Gong Y. et al. Ceramics International, 2021, 47(21), 30648. 3 Wang L. Preparation of SiC-MgAl2O4 composite and its resistance to coal slag corrosion. Master’s Thesis, Sinosteel Luoyang Institute of Refractories Research, China, 2019 (in Chinese). 王岚. SiC-MgAl2O4复合材料的制备及抗煤渣侵蚀性能研究. 硕士学位论文, 中钢集团洛阳耐火材料研究院, 2019. 4 Sun H G, Si Y C, Xia M, et al. Materials Reports, 2022, 36(20), 181 (in Chinese). 孙红刚, 司瑶晨, 夏淼, 等. 材料导报, 2022, 36(20), 181. 5 Sun H G, Li H X, Chen L G, et al. Corrosion Science, 2022, 207, 110560. 6 Hong Y R, Sun J L. Non-oxide composite refractory, Metallurgical Industry Press, China, 2003, pp. 58 (in Chinese). 洪彦若, 孙加林. 非氧化物复合耐火材料, 冶金工业出版社, 2003, pp. 58. 7 Han J S, Li Y, Ma C H, et al. Journal of the European Ceramic Society, 2022, 42(14), 6356. 8 Ma C H, Li Y, Zhang L X, et al. Journal of Materials Science, 2019, 54(24), 14654. 9 Huang J W, Hussain M I, Lv X A, et al. Journal of Alloys and Compounds, 2022, 909, 164648. 10 Wu X F, Peng J, Li Y, et al. Solid State Sciences, 2020, 100, 106112. 11 Ma C H, Li Y, Zhang L X, et al. Journal of the American Ceramic Society, 2019, 102(10), 6349. 12 Xia M. Preparation and properties of metal composite SiC-MA green refractories for coal gasification. Master’s Thesis, Sinosteel Luoyang Refractory Research, China, 2021 (in Chinese). 夏淼. 煤气化用金属复合SiC-MA绿色材料的制备及性能研究. 硕士学位论文, 中钢集团洛阳耐火材料研究院, 2021. 13 Si Y C, Li H X, Sun H G, et al. Ceramics International, 2023, 49(7), 10566. 14 Si Y C, Li H X, Sun H G, et al. Materials Today Communications, 2022, 31, 103314. 15 Li J X, Zhao W J, Yan S, et al. Chinese Journal of Energetic Materials, 2021, 29(10), 888 (in Chinese). 李建新, 赵婉君, 闫石, 等. 含能材料, 2021, 29(10), 888. 16 Wu C C, Xiang J Z, Sun X L, et al. Armaments Engineering Journal, 2020, 41(S2), 162 (in Chinese). 吴成成, 向俊舟, 孙晓乐, 等. 兵工学报, 2020, 41(S2), 162. 17 Weiss J, Griel P, Gauckler L J. Journal of the American Ceramic Society, 1982, 65(5), 68. 18 Tong S H, Li Y, Jiao Z Y, et al. Journal of the Chinese Ceramic Society, 2019, 47(12), 1746 (in Chinese). 仝尚好, 李勇, 焦智宇, 等. 硅酸盐学报, 2019, 47(12), 1746. 19 Granon A, Goeuriot P, Thevenot F, et al. Journal of the European Ceramic Society, 1994, 13(4), 365. 20 Mao H, Selleby M, Sundman B. Calphad, 2004, 28(3), 307. 21 Willems H X, De G, Metselaar R. Journal of the European Ceramic Society, 1993, 12(1), 43. 22 Dai W B, Lin W, Yamaguchi A, et al. Journal of the Ceramic Society of Japan, 2007, 115(1337), 42. 23 Lin X, Wang H, Tu B, et al. Journal of the American Ceramic Society, 2014, 97(1), 63. 24 Yang D Y, Zhang H Y, Zhong X C. Refractories, 2006(1), 12 (in Chinese). 杨道媛, 张海燕, 钟香崇. 耐火材料, 2006(1), 12. 25 Yan M W, Li Y, Li H Y, et al. Ceramics International, 2018, 44(4), 3856. 26 Gui S, Wang Z F, Wang X T, et al. Journal of Wuhan University of Science and Technology, 2019, 42(4), 272 (in Chinese). 桂舜, 王周福, 王玺堂, 等. 武汉科技大学学报, 2019, 42(4), 272. |
|
|
|