METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
First-principles Calculations of Properties of TixNbMoTaW High Entropy Alloys |
PENG Chao1, ZHAO Yong2, ZHANG Fang2, LONG Xu3, LIN Jinbao1, CHANG Chao1,*
|
1 School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China 2 Shanxi Diesel Engine Industry Co., Ltd., Datong 037036, Shanxi, China 3 School of Mechanics and Civil Engineering, Northwestern Polytechnical University, Xi'an 710072, China |
|
|
Abstract NbMoTaW alloy is one of the most widely studied refractory high entropy alloys. It has the excellent properties of high entropy alloy, high strength, high hardness and wear resistance, but its toughness is poor, which greatly affects its application in engineering. In this study, different proportions of Ti elements were added into NbMoTaW alloy to improve the toughness of the alloy. The phase structure of TixNbMoTaW was determined to be solid solution phase by calculating the phase formation parameters. The crystal lattice constant, formation energy and enthalpy change of the alloy were calculated by the first-principles method based on density functional theory to analyze the structural stability of the alloy. By calculating the elastic constants, elastic modulus, B/G, Poisson ratio ν, Cauchy pressure C12-C44 and other parameters of the alloys with different Ti content, the elastic properties of the alloys were studied. Finally, the electron state density analysis shows that the bonding covalence of the alloy system decreases and the metal bond strengthens. The results of elastic properties and state density show that adding Ti can improve the toughness of the alloy. This study can provide some theoretical guidance and design ideas for designing and improving the properties of refractory high entropy alloys.
|
Published: 10 August 2024
Online: 2024-08-29
|
|
Fund:Shanxi Province Science and Technology Cooperation and Exchange Special Project (202204041101044), Graduate Science and Technology Innovation Project of Taiyuan University of Science and Technology(XCX212104). |
|
|
1 Jiang R, Song Y D, Reed P A. International Journal of Fatigue, 2020, 141, 105887. 2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299. 3 Cantor B, Chang I T H, Knight P, et al. Materials Science and Engineering:A, 2004, 375, 213. 4 Ding Q, Zhang Y, Chen X, et al. Nature, 2019, 574(7777), 223. 5 George E P, Raabe D, Ritchie R O. Nature Reviews Materials, 2019, 4(8), 515. 6 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448. 7 Ye Y F, Wang Q, Lu J, et al. Materials Today, 2016, 19(6), 349. 8 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1. 9 Senkov O N, Wilks G B, Miracle D B, et al. Intermetallics, 2010, 18(9), 1758. 10 Senkov O N, Miracle D B, Chaput K J, et al. Journal of Materials Research, 2018, 33(19), 3092. 11 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics, 2011, 19(5), 698. 12 Cao P, Ni X, Tian F, et al. Journal of Physics:Condensed Matter, 2015, 27(7), 075401. 13 Feng X B, Zhang J Y, Wang Y Q, et al. International Journal of Plasticity, 2017, 95, 264. 14 Qi L, Chrzan D C. Physical Review letters, 2014, 112(11), 115503. 15 Sheikh S, Bijaksana M K, Motallebzadeh A, et al. Intermetallics, 2018, 97, 58. 16 Xu Q, Chen D, Tan C, et al. Journal of Materials Science & Technology, 2021, 60, 1. 17 Wang B, Wang Q, Lu N, et al. Journal of Materials Science & Technology, 2022, 123, 191. 18 Dirras G, Lilensten L, Djemia P, et al. Materials Science and Engineering:A, 2016, 654, 30. 19 Liu X W, Bai Z C, Ding X F, et al. Materials Letters, 2021, 287, 129255. 20 Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Materials Letters, 2015, 142, 153. 21 Chen S Y, Yang X, Dahmen K A, et al. Entropy, 2014, 16(2), 870. 22 Shao L, Yang M, Ma L, et al. International Journal of Refractory Metals and Hard Materials, 2021, 95, 105451. 23 Chan K S. Metallurgical and Materials Transactions A, 2001, 32, 2475. 24 Tian F, Varga L K, Chen N, et al. Journal of Alloys and Compounds, 2014, 599, 19. 25 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865. 26 Payne M C, Teter M P, Allan D C, et al. Reviews of Modern Physics, 1992, 64(4), 1045. 27 Leung T C, Chan C T, Harmon B N. Physical Review B, 1991, 44(7), 2923. 28 Cooper A S. Acta Crystallographica, 1962, 15(6), 578. 29 Li X J, Sun K, Chen C, et al. Journal of Xi'an Jiaotong University, 2022, 56(3), 180(in Chinese). 李雪洁, 孙琨, 陈诚, 等. 西安交通大学学报, 2022, 56(3), 180. 30 Nutor R K, Cao Q, Wang X, et al. Advanced Engineering Materials, 2020, 22(11), 2000466. 31 Senkov O N, Miller J D, Miracle D B, et al. Nature Communications, 2015, 6(1), 6529. 32 Guo S, Ng C, Lu J, et al. Journal of Applied Physics, 2011, 109(10), 103505. 33 Chen R, Qin G, Zheng H, et al. Acta Materialia, 2018, 144, 129. 34 Zhang Y, Zhou Y J, Lin J P, et al. Advanced Engineering Materials, 2008, 10(6), 534. 35 Lee C, Chou Y, Kim G, et al. Advanced Materials, 2020, 32(49), 2004029. 36 Lee C, Song G, Gao M C, et al. Acta Materialia, 2018, 160, 158. 37 Song H, Tian F, Hu Q M, et al. Physical Review Materials, 2017, 1(2), 023404. 38 Qing G. Correlation between valence electron concentration and microstructure properties of high entropy alloys. Ph. D. Thesis, Harbin Institute of Technology, China, 2020(in Chinese). 秦刚. 高熵合金价电子浓度与组织性能的相关性. 博士学位论文, 哈尔滨工业大学, 2020. 39 Dean J A. Rann handbook of chemistry:13th edition, Science Press, China, 1991(in Chinese). 迪安. 兰氏化学手册:第13版, 科学出版社, 1991. 40 Bulanova M, Fartushna I, Meleshevich K, et al. Journal of Alloys and Compounds, 2014, 598, 61. 41 Dryś M, Sosnowski J, Folcik L. Journal of the Less Common Metals, 1979, 68(2), 175. 42 Xie R, Li Y, Liu H, et al. Journal of Alloys and Compounds, 2017, 691, 378. 43 Edwards J W, Speiser R, Johnston H L. Journal of Applied Physics, 1951, 22(4), 424. 44 Shah J S, Straumanis M E. Journal of Applied Physics, 1971, 42(9), 3288. 45 He Q, Yu B, Li Z, et al. Energy & Environmental Materials, 2019, 2(4), 264. 46 Ding C, Gao Z J, Hu X, et al. Journal of Atomic and Molecular Physics, 2022, 39(5), 154(in Chinese). 丁璨, 高振江, 胡兴, 等. 原子与分子物理学报, 2022, 39(5), 154. 47 Nong Z S, Zhu J C, Zhao R D. Intermetallics, 2017, 86, 134. 48 Born M. Mathematical proceedings of the cambridge philosophical society, Cambridge University Press, UK, 1940, pp.160. 49 Mouhat F, Coudert F X. Physical Review B, 2014, 90(22), 224104. 50 Wu Z, Zhao E, Xiang H, et al. Physical Review B, 2007, 76(5), 054115. 51 Chen Y, Xue Z, Zhang S, et al. Materials Chemistry and Physics, 2020, 248, 122891. 52 Laplanche G, Birk T, Schneider S, et al. Acta Materialia, 2017, 127, 143. 53 Ranganathan S I, Murshed M R, Costa L. Acta Mechanica, 2018, 229(6), 2631. 54 Han Z D, Chen N, Zhao S F, et al. Intermetallics, 2017, 84, 153. 55 Born M, Huang K, Lax M. American Journal of Physics, 1955, 23(7), 474. 56 Pugh S F. Dublin Philosophical Magazine and Journal of Science, 1954, 45(367), 823. 57 Hu Y L, Bai L H, Tong Y G, et al. Journal of Alloys and Compounds, 2020, 827, 153963. 58 Miracle D B, Senkov O N, Wilks G B, et al. In:Air Force Research Lab Wright-Patterson Afb Oh Materials and Manufacturing Directorate. USA, 2010. 59 Hu G X, Cai X, Rong Y H, et al. Fundamentals of materials science, Shanghai Jiao Tong University Press, China, 2010, pp.87(in Chinese). 胡赓祥, 蔡珣, 戎咏华, 等. 材料科学基础, 上海交通大学出版社, 2010, pp.87. 60 Song Q G, Qin G S, Yang B B, et al. Journal of Physics, 2016, 65(4), 244(in Chinese). 宋庆功, 秦国顺, 杨宝宝, 等. 物理学报, 2016, 65(4), 244. 61 Xu J, Freeman A J. Physical Review B, 1989, 40(17), 11927. 62 Carlsson A E, Meschter P J. Journal of Materials Research, 1989, 4(5), 1060. |
[1] |
WANG Zijian, SUN Shulei, XIAO Han, RAN Xudong, CHEN Qiang, HUANG Shuhai, ZHAO Yaobang, ZHOU Li, HUANG Yongxian. Research Status of Additive Friction Stir Deposition[J]. Materials Reports, 2024, 38(9): 22100039-16. |
|
|
|
|