PROCESSING AND PROPERTY REGULATION OF ADVANCED NONFERROUS METAL MATERIAL |
|
|
|
|
|
Research Progress on the Prediction and Control of Springback During Bending of Magnesium Alloy Sheets |
JI Hongxin1,2, REN Weijie1,2,*, JIANG Xianxian1,2, DU Wenyu1,2, SUN Jingna1,2, HUANG Huagui1,2
|
1 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Qinhuangdao 066004, Hebei, China 2 School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China |
|
|
Abstract Magnesium (Mg) alloy is the lightest engineering metal and has broad application prospects in new energy vehicles, aerospace fields, etc., where bending deformation is widespread. However, due to the low elastic modulus, the springback of Mg alloy is large and not easy to control when bending at room temperature, which seriously affects the forming precision and post service performance of parts. So, accurate prediction and control of springback for Mg alloys is still an important problem to be solved at present. In recent years, in order to improve the forming precision of Mg alloy and expand its industrial application, scholars in various countries have proposed many methods for predicting and controlling the springback of Mg alloys. In this paper, the research progress on the prediction and control of springback during bending of Mg alloy is reviewed, several common methods in predicting the springback are introduced, and the influencing factors and control methods of springback are analyzed. Finally, future research directions on this field were proposed.
|
Published: 10 August 2024
Online: 2024-08-29
|
|
Fund:National Natural Science Foundation of China (52201144, U20A20230) and Cultivation Project for Basic Research and Innovation of Yanshan University (2021LGQN013). |
|
|
1 Pollock T M. Science, 2010, 328(5981), 986. 2 Yang Y, Xiong X M, Chen J, et al. Journal of Magnesium and Alloys, 2021, 9(3), 705. 3 Cepeda-Jiménez C M, Pérez-Prado M T. Acta Materialia, 2016, 108, 304. 4 Wang L F, Huang G S, Zhang H, et al. Journal of Materials Processing Technology, 2013, 213(6), 844. 5 Xie H Y, Wang Q, Liu K, et al. Journal of Materials Processing Technology, 2015, 219, 321. 6 Li B, Mcclelland Z, Horstemeyer S J, et al. Materials & Design, 2015, 66, 575. 7 Leu D K, Zhuang Z W. Journal of Mechanical Science and Technology, 2016, 30(3), 1077. 8 Huang G S, Wang L F, Zhang H, et al. Materials Letters, 2013, 98, 47. 9 Ren W J, Li J J, Xin R L. Scripta Materialia, 2019, 170, 6. 10 Ma L F, Ma Z Y, Jia W T, et al. The International Journal of Advanced Manufacturing Technology, 2015, 79, 1519. 11 Zhan M, Wang Y, Yang H, et al. Journal of Materials Processing Technology, 2016, 236, 123. 12 Zhang Z Y. The effect of precipitations and twin-detwining behaviors on the shift of neutral layer of AZ80 magnesium alloy plate. Master’s Thesis, Taiyuan University of Technology, China, 2021 (in Chinese). 张征勇. 析出相和孪生-去孪生机制对AZ80镁合金板材中性层偏移机制的影响. 硕士学位论文, 太原理工大学, 2021. 13 Desinghege S G, Hodgson P, Weiss M. Journal of Materials Processing Technology, 2021, 289, 116951. 14 Wu W, Qiao H, An K, et al. International Journal of Plasticity, 2014, 62, 105. 15 Barlat F, Brem J C, Yoon J W, et al. International Journal of Plasticity, 2003, 19(9), 1297. 16 Guo L, Jia W P, Du K, et al. Journal of Liaoning University of Science and Technology, 2012, 35(4), 360 (in Chinese). 郭磊, 贾维平, 杜坤, 等. 辽宁科技大学学报, 2012, 35(4), 360. 17 Bao J. Springback prediction of roll forming of magnesium alloy sheet. Master’s Thesis, North China University of Technology, China, 2021 (in Chinese). 暴杰. 镁合金板辊弯成形回弹预测研究. 硕士学位论文, 北方工业大学, 2021. 18 Yu H Y, Wu H Y, Wang L. In:IOP Conference Series:Materials Science and Engineering. Seoul, 2020, pp.012046. 19 Cáceres C H, Sumitomo T, Veidt M. Acta Materialia, 2003, 51(20), 6211. 20 Hama T, Takuda H. International Journal of Plasticity, 2011, 27(7), 1072. 21 Hama T, Kitamura N, Takuda H. Materials Science and Engineering:A, 2013, 583, 232. 22 Shiraishi K, Mayama T, Yamasaki M, et al. Materials Science and Engineering:A, 2020, 790, 139679. 23 Wang H, Lee S Y, Wang H M, et al. Scripta Materialia, 2020, 176, 36. 24 Tang W Q, Lee J Y, Wang H M, et al. Journal of Magnesium and Alloys, 2021, 9(3), 927. 25 Paudel Y, Indeck J, Hazeli K, et al. Acta Materialia, 2020, 183, 438. 26 Lee J, Bong H J, Lee Y S, et al. Metallurgical and Materials Transactions A, 2019, 50, 2720. 27 Jafari M, Lotfi M, Ghaseminejad P, et al. Transactions of the Indian Institute of Metals, 2015, 68(5), 969. 28 Hama T, Kariyazaki Y, Ochi K, et al. Materials Transactions, 2010, 51(4), 685. 29 Kim H W, Yu J H, Lee C W. Transactions of Materials Processing, 2018, 27(3), 139. 30 Huang G S, Wang Y X, Wang L F, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(3), 732. 31 Kim D, Kim J H, Lee M G, et al. Materials Research Innovations, 2011, 15, 183. 32 Troitskii O A, Likhtman V I. Soviet Physics Doklady, 1963, 8, 91. 33 Ren D X, Zeng F Y, Liu L M, et al. Materials, 2019, 12(6), 977. 34 Chu X R, Wang L, Lin S X, et al. Acta Metallurgica Sinica (English Letters), 2018, 31, 1249. 35 Park J W, Jeong H J, Jin S W, et al. Transactions of Materials Processing, 2018, 27(3), 177. 36 Li M Q, Shen Y D, Luo K. et al. Nature Materials, 2023, 22, 958. 37 Sprecher A F, Mannan S L, Conrad H. Acta Metallurgica, 1986, 34(7), 1145. 38 Wang X W, Xu J, Jiang Z L, et al. Materials Science and Engineering:A, 2016, 659, 215. 39 Ren W J. Modeling the inhomogeneous deformation and twinning behaviors during bending of magnesium alloy with crystal plasticity FEM. Ph. D. Thesis, Chongqing University, China, 2020 (in Chinese). 任伟杰. 镁合金弯曲变形不均匀性与孪生行为的晶体塑性有限元模拟. 博士学位论文, 重庆大学, 2020. 40 Kim H H, Kang C G. In:Engineering Plasticity and Its Applications. Wuhan, 2011, pp.331. 41 Hama T, Suzuki T, Nakatsuji Y, et al. Materials Transactions, 2020, 61(5), 941. 42 Yu J H, Lee C W. Materials, 2021, 14(14), 3856. 43 Chen F K, Huang T B. Journal of Materials Processing Technology, 2003, 142(3), 643. 44 Youn H W, Kyeong J H, Park K, et al. Journal of the Korean Society for Precision Engineering, 2021, 38(10), 775. |
|
|
|