PROCESSING AND PROPERTY REGULATION OF ADVANCED NONFERROUS METAL MATERIAL |
|
|
|
|
|
Advancement in Directional Technology of TiAl Intermetallic Compounds |
MA Yunlu1, YANG Jieren1,*, LIU Zedong1, CHEN Ruirun2
|
1 College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China 2 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract TiAl alloys with low density and good high-temperature properties, are regarded as a new type of structural material with great application potential in the aerospace field. The fully lamellar TiAl alloy with columnar/single crystal structure exhibits excellent comprehensive mechanical properties at high temperatures. This paper first introduces the basic concepts of directional TiAl alloys, such as development background, directional structure, and mechanical property anisotropy. Then, based on the three aspects including working principle, key technology, and structural characteristics, the directional technologies such as traditional Bridgman method, optical floating zone method, electromagnetic constraint, and electromagnetic cold crucible are discussed. Furthermore, combined with the latest research results, the work of preparing TiAl alloys by directional annealing is elaborated. Finally, the research direction of directional technology in TiAl alloys is prospected, and it is pointed out that new principles and technologies need to be developed in terms of optimizing composition design, controlling microstructure/phase transformation, and stably producing large-scale directional crystals.
|
Published: 10 August 2024
Online: 2024-08-29
|
|
Fund:National Natural Science Foundation of China (52074229,52371035) and Key R & D Plan of Sichuan Province (SC2022A1C01J, 23ZDYF0546). |
|
|
1 Chen G, Peng Y, Zheng G, et al. Nature Materials, 2016, 15(8), 876. 2 Zhao X Y, Chen R R, Yang Y, et al. Rare Metals, 2023, 42(6), 2047. 3 He T, Hu R, Yang J R, et al. Rare Metals, 2023, 42(1), 288. 4 Johnson D R, Inui H, Yamaguchi M. Acta Materialia, 1996, 44(6), 2523. 5 Ding X F, Zhang L Q, Lin J P, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(4), 747. 6 Lapin J, Gabalcova Z. Intermetallics, 2011, 19(6), 797. 7 Ding X F, Lin J P, He J P, et al. Rare Metals, 2010, 29(3), 292. 8 Cheng T, Mitchell A, Beddoes J, et al. High Temperature Materials and Processes, 2000, 19(2), 79. 9 Inui H, Oh M H, Nakamura A, et al. Acta Metallurgica Et Materialia, 1992, 40(11), 3095. 10 Johnson D R, Masuda Y, Inui H, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 1997, 240, 577. 11 Yue X A, Shen J, Wang L, et al. Journal of Alloys and Compounds, 2022, 25, 891. 12 Wang Y Z, Li W, Yuan H, et al. Intermetallics, DOI:10. 1016/j. intermet. 2021. 107391. 13 Fujiwara T, Nakamura A, Hosomi M, et al. Philosophical Magazine A-Physics of Condensed Matter Structure Defects and Mechanical Properties, 1990, 61(4), 591. 14 Witusiewicz V T, Bondar A A, Hecht U, et al. Journal of Alloys and Compounds, 2008, 465(1-2), 64. 15 Burgers W G. Physica, 1934, 1, 561. 16 Jaffee R I, Promisel N E. The science, technology, and application of titanium, Pergamon Press, UK, 1970, pp.677. 17 Jung I S, Jang H S, Oh M H, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2002, 329, 13. 18 Wang Z T, Zheng G, Qi Z X, et al. Chinese Science Bulletin, 2023, 68(25), 3259 (in Chinese). 王子特, 郑功, 祁志祥, 等. 科学通报, 2023, 68(25), 3259. 19 Wang Y Z, Yuan H, Ding H S, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2019, 752, 199. 20 Kim M C, Oh M H, Wee D M, et al. Materials Transactions Jim, 1996, 37(5), 1197. 21 Yao K F, Inui H, Kishida K, et al. Acta Metallurgica Et Materialia, 1995, 43(3), 1075. 22 Yokoshima S, Yamaguchi M. Acta Materialia, 1996, 44(3), 873. 23 Matsuo T, Nozaki T, Asai T, et al. Intermetallics, 1998, 6(7-8), 695. 24 Matsuo T, Nozaki T, Asai T, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2002, 329, 774. 25 Johnson D R, Masuda Y, Inui H, et al. Acta Materialia, 1997, 45(6), 2523. 26 Yamaguchi M, Johnson D R, Lee H N, et al. Intermetallics, 2000, 8(5-6), 511. 27 Li Y, Liu H G, Wang S D, et al. Acta Metallurgica Sinica, 2015, 51(8), 957 (in Chinese). 李勇, 刘国怀, 王昭东, 等. 金属学报, 2015, 51(8), 957. 28 Su Y Q, Liu T, Li X Z, et al. Acta Metallurgica Sinica, 2018, 54(5), 647 (in Chinese). 苏彦庆, 刘桐, 李新中, 等. 金属学报, 2018, 54(5), 647. 29 Fan J L, Wu S, Gao H X, et al. Materials Reports, 2016, 30(23), 74 (in Chinese). 樊江磊, 吴深, 高红霞, 等. 材料导报, 2016, 30(23), 74. 30 Yue X A, Shen J, Wang L, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI;10. 1016/j. msea. 2021. 141139. 31 Yue X A, Shen J, Xiong Y, et al. Intermetallics, DOI:10. 1016/j. intermet. 2021. 107406. 32 Zheng S K, Shen J, Lu X H, et al. Materialia, DOI:10. 1016/j. mtla. 2021. 101306. 33 Fan J, Guo J, Long W, et al. Materials Science and Technology, 2014, 30(2), 183. 34 Yu Y Z, Li Y S, Cheng X L, et al. Materials Reports, 2012, 26(7), 102 (in Chinese). 于延洲, 李永胜, 程晓玲, 等. 材料导报, 2012, 26(7), 102. 35 Shang Z B. Microstructure and properties of cold crucible directionally solidified Ti-47Al-2Cr-2Nb and its high crycle fatigue. Master’s Thesis, Harbin Institute of Technology, China, 2017 (in Chinese). 尚子博. 冷坩埚定向凝固Ti-47Al-2Cr-2Nb的组织性能与高周疲劳. 硕士学位论文, 哈尔滨工业大学, 2017. 36 Ding X F, Lin J P, Zhang L Q, et al. Scripta Materialia, 2011, 65(1), 61. 37 Zhang L, Lin J P, Ding X F, et al. Journal of Alloys and Compounds, 2016, 656, 720. 38 Zhang C J, Xu D M, Fu H Z, et al. Journal of Crystal Growth, 2008, 310(15), 3604. 39 Du Y J, Shen J, Xiong Y L, et al. JOM, 2015, 67(6), 1258. 40 Liu T, Luo L, Su Y, et al. Intermetallics, 2016, 73, 1. 41 Drevermann A, Schmitz G J, Behr G, et al. In:Symposium on Advanced Intermetallic-Based Alloys for Extreme Environment and Energy Applications held at the 2008 MRS Fall Meeting. Boston, 2009, pp.97. 42 Yue X A, Shen J, Xiong Y L, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI:10. 1016/j. msea. 2021. 141938. 43 Bridgman P W. Proceedings of the American Academy of Arts and Sciences, 1925, 60(1-14), 305. 44 Stockbarger D C. Review of Scientific Instruments, 1936, 7(3), 133. 45 Lapin J, Gabalcova Z, Pelachova T. Intermetallics, 2011, 19(3), 396. 46 Zhang Y, Li X, Liu G, et al. Acta Metallurgica Sinica, 2013, 49(9), 1061. 47 Li K, Chen G, Zhang H, et al. Materials Research Express, 2018, 5, 11. . 48 Li K, Xiong F, Chen G, et al. Intermetallics, 2018, 102, 106. 49 Fan J L, Liu J X, Tian S X, et al. Journal of Alloys and Compounds, 2015, 650, 8. 50 Fan J L, Wei Z X, Li Y, et al. International Journal of Metalcasting, 2022, 16(2), 622. 51 Keck P H, Golay M J E. Physical Review, 1953, 89(6), 1297. 52 Kawabata T, Abumiya T, Kanai T, et al. Acta Metallurgica Et Materialia, 1990, 38(8), 1381. 53 Kumagai T, Abe E, Nakamura M. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 1998, 29(1), 19. 54 Kim J H, Kim S W, Lee H N, et al. Intermetallics, 2005, 13(10), 1038. 55 Liu R, Teng C, Cui Y, et al. Acta Metallurgica Sinica, 2012, 48(2), 235. 56 Jin H, Jia Q, Liu R H, et al. Acta Metallurgica Sinica, 2019, 55(12), 1519 (in Chinese). 金浩, 贾清, 刘荣华, 等. 金属学报, 2019, 55(12), 1519. 57 Hu Y S, Jin H, Liu R H, et al. Transactions of Materials and Heat Treatment, 2014, 35(9), 45 (in Chinese). 胡轶嵩, 金浩, 刘荣华, 等. 材料热处理学报, 2014, 35(9), 45. 58 Fu H Z, Shen J, Liu L, et al. Journal of Materials Processing Technology, 2004, 148(1), 25. 59 Zheng S K, Shen J, Wang W, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI:10. 1016/j. msea. 2023. 145157. 60 Du Y J, Shen J, Xiong Y L, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2015, 621, 94. 61 Du Y J, Shen J, Xiong Y L, et al. Intermetallics, 2015, 61, 80. 62 Zheng S K, Shen J, Shang Z, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI:10. 1016/j. msea. 2020. 139962. 63 Du Y J, Shen J, Xiong Y, et al. Journal of Materials Research, 2018, 33(8), 958. 64 Zheng S K, Shen J, Lu X H, et al. Journal of Alloys and Compounds, 2022, 912, 165200. 65 Du Y J. Frabication of lamellar microstructure of TiAl alloys by electromagnetic confinement and its properties. Ph. D. Thesis, Northwestern Polytechnical University, China, 2017(in Chinese). 杜玉俊, TiAl合金定向片层组织电磁约束制备及力学性能. 博士学位论文, 西北工业大学, 2017. 66 Kim S E, Lee Y T, Oh M H, et al. Intermetallics, 2000, 8(4), 399. 67 Yang J R, Chen R R, Su Y Q, et al. Energy, 2018, 161, 143. 68 Ding H S, Chen R R, Guo J J, et al. Materials Letters, 2005, 59(7), 741. 69 Fu H Z. Directional solidification processing of aero-high temperature materials, Science Press, China, 2015, pp.332(in Chinese). 傅恒志. 航空航天材料定向凝固, 科学出版社, 2015, pp.332. 70 Yang J R, Chen R R, Ding H S, et al. Intermetallics, 2013, 42, 184. 71 Xu X S, Ding H S, Huang H T, et al. Journal of Materials Research and Technology-Jmr&T, 2021, 11, 2221. 72 Ding H S, Chen R R, Wang Y L, et al. In:The Fifth Pacific Rim International Conference on Advanced Materials and Processing. Beijing, 2004, pp.2575. 73 Chen R, Ding H, Guo J, et al. Special Casting & Nonferrous Alloys, 2008, 28(2), 93. 74 Wang Y L, Ding H S, Bi W S, et al. Rare Metal Materials and Engineering, 2005, 34(10), 1627. 75 Chen R R, Ding H S, Guo J J, et al. Rare Metal Materials and Engineering, 2007, 36(10), 1722. 76 Luo L, Ding H S. Journal of Aeronautical Materials, 2009, 29(5), 19. 77 Wang Y L, Fu H Z. Rare Metal Materials and Engineering, 2010, 39(5), 787. 78 Yang J R, Chen R R, Ding H S, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(1), 157. 79 Chen R R, Yang J R, Ding H S, et al. Advanced Materials Research, 2012, 472-475(1), 767. 80 Yang J R, Chen R R, Ding H S, et al. In:International Conference on Applied Mechanics, Materials and Manufacturing (ICAMMM 2011). Shenzhen, 2011, pp.335. 81 Chen R R, Yang J R, Ding H S, et al. China Foundry, 2012, 9(1), 15. 82 Dong S L, Wang Q, Chen R R, et al. Materials Characterization, DOI:10. 1016/j. matchar. 2022. 112591. 83 Yang J R, Chen R R, Ding H S, et al. Journal of Materials Processing Technology, 2014, 214(3), 735. 84 Yang Y H. Investigation on transfer behaviors during directional solidification of TiAl-based alloys by electromagetic cold crucible. Ph. D. Thesis, Harbin Institute of Technology, China, 2019 (in Chinese). 杨耀华. TiAl基合金冷坩埚定向凝固过程中传输特性研究. 博士学位论文, 哈尔滨工业大学, 2019. 85 Johnson D R, Lee H N, Muto S, et al. Intermetallics, 2001, 9(10-11), 923. 86 Yang Y H, Chen R R, Guo J J, et al. International Journal of Heat and Mass Transfer, 2018, 122, 1128. 87 Yang J R, Chen R R, Guo J J, et al. Rare Metal Materials and Engineering, 2016, 45(5), 1357 (in Chinese). 杨劼人, 陈瑞润, 郭景杰, 等. 稀有金属材料与工程, 2016, 45(5), 1357. 88 Ding H S, Nie G, Chen R R, et al. Intermetallics, 2012, 31, 264. 89 Liu Y, Xue X, Fang H, et al. Crystengcomm, 2020, 22(7), 1188. 90 Chen R R, Liu Y L, Xue X, et al. Materials Characterization, DOI:10. 1016/j. matchar. 2021. 111354179. 91 Liu Y L, Xue X, Chen R R, et al. International Communications in Heat and Mass Transfer, DOI:10. 1016/j. icheatmasstransfer. 2019. 104315. 92 Ukai S, Taya K, Nakamura K, et al. Journal of Alloys and Compounds, 2018, 744, 204. 93 Zhang Z W, Chen G, Chen G L. Acta Materialia, 2007, 55(17), 5988. 94 Zhang Z W, Chen G L, Chen G. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2006, 434(1-2), 58. 95 Liu Y L, Xue X, Fang H Z, et al. Journal of Alloys and Compounds, DOI:10. 1016/j. jallcom. 2020. 158441. 96 Liu Y L, Xue X, Fang H Z, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI:10. 1016/j. msea. 2019. 138701. 97 Liu Y L, Xue X, Fang H Z, et al. Journal of Materials Research and Technology-Jmr&T, 2020, 9(6), 16355. 98 Dong S L, Wu W, Chen R R, et al. Intermetallics, DOI:10. 1016/j. intermet. 2023. 108087. 99 Wang H, Wang Q, Ding H S, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI:10. 1016/j. msea. 2021. 141904. 100 Du Y J, Shen J, Xiong Y L, et al. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2019, 50A(9), 4166. 101 Wang Q, Ding H S, Zhang H L, et al. Materials & Design, 2017, 125, 146. 102 Liu Y, Xue X, Tan Y M, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI:10. 1016/j. msea. 2020. 140038. 103 Dong S L, Chen R R, Guo J J, et al. Materials & Design, 2015, 67, 390. 104 Dong S L, Chen R R, Guo J J, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2014, 614, 67. 105 Xing M. Microstructure and high temperature mechanical properties of cold crucible directionally solidified titanium aluminum alloy. Master’s Thesis, Harbin Institute of Technology, China, 2020 (in Chinese). 邢明. 冷坩埚定向凝固TiAl合金组织与高温力学性能研究. 硕士学位论文, 哈尔滨工业大学, 2020. 106 Xia Z Z. Preparation and mechanical properties of Ti-48Al-2Cr-2Nb alloy having similarly oriented lamellae with fine lamellar spacing. Ph. D. Thesis, University of Science and Technology of China, China, 2022 (in Chinese). 夏智州. 定向细小片层Ti-48Al-2Cr-2Nb合金的制备及其力学性能的研究. 博士学位论文, 中国科学技术大学, 2022. 107 Wang Q. Study on the microstructures and mechanical behavior of Ti-47Al-2Nb-2Cr-(Er, C, Mn) directionally solidified by cold crucible. Ph. D. Thesis, Harbin Institute of Technology, China, 2019 (in Chinese). 王强. 冷坩埚定向凝固Ti-47Al-2Nb-2Cr-(Er, C, Mn)合金显微组织及力学行为研究. 博士学位论文, 哈尔滨工业大学, 2019. 108 Ding H S, Wang Y Z, Chen R R, et al. Materials & Design, 2015, 86, 670. 109 Genc O, Unal R. Journal of Alloys and Compounds, DOI:10. 1016/j. jallcom. 2022. 167262. 110 Wang Y Z, Liu X W, Dong D, et al. Journal of Materials Research and Technology-Jmr&T, 2023, 25, 570. 111 Wang Y Z, Ding H S, Zhang H L, et al. Materials & Design, 2014, 64, 153. 112 Huang H T. Research on microstructure evolution of composite cold crucible directionally solidified TiAl based alloy. Master’s Thesis, Harbin Institute of Technology, China, 2019 (in Chinese). 黄海涛. 复合冷坩埚定向凝固TiAl基合金组织演化研究. 硕士学位论文, 哈尔滨工业大学, 2019. 113 Kishida K, Johnson D R, Masuda Y, et al. Intermetallics, 1998, 6(7-8), 679. 114 Wang Q, Chen R R, Gong X, et al. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2018, 49A(10), 4555. 115 Wang Q, Chen R, Gong X, et al. Intermetallics, 2018, 94, 152. 116 Xu X S, Ding H S, Huang H T, et al. Journal of Materials Science & Technology, 2022, 127, 115. 117 Wang Q, Chen R R, Yang Y H, et al. Advanced Engineering Materials, DOI:10. 1002/adem. 201700734. 118 Wang Q, Chen R R, Yang Y H, et al. Intermetallics, 2018, 100, 104. 119 Yang J R, Fang X, Liu Y, et al. Rare Metals, 2021, 40(12), 3588. 120 Liang Z Q, Xiao S L, Cai Y, et al. Vacuum, DOI:10. 1016/j. vacuum. 2023. 112731. 121 Loginov P A, Markov G M, Korotitskiy A V, et al. Materials Characterization, DOI:10. 1016/j. matchar. 2023. 113367. 122 Wang Q. Creep behavior of high Nb-TiAl alloys prepared by cold crucible directional solidification. Ph. D. Thesis, Harbin Institute of Technology, China, 2020 (in Chinese). 王琪. 冷坩埚定向凝固高Nb-TiAl合金蠕变行为. 博士学位论文, 哈尔滨工业大学, 2020. 123 Wang Q, Chen R R, Yang Y, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2018, 711, 508. 124 Li W. Microstructure and fatigue properties of cold crucible directional solidified TiAl alloy. Master’s Thesis, Harbin Institute of Technology, China, 2020 (in Chinese). 李伟. 冷坩埚定向凝固TiAl合金组织与疲劳性能. 硕士学位论文, 哈尔滨工业大学, 2020. 125 Xu X S, Ding H S, Li W, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, DOI:10. 1016/j. msea. 2021. 141633. 126 Ding H S, Shang Z B, Wang Y Z, et al. Acta Metallurgica Sinica, 2015, 51(5), 569 (in Chinese). 丁宏升, 尚子博, 王永喆, 等. 金属学报, 2015, 51(5), 569. 127 Xu X S, Ding H S, Huang H T, et al. International Journal of Fatigue, DOI:10. 1016/j. ijfatigue. 2023. 107597. 128 Chen Y, Cao Y D, Qi Z X, et al. Journal of Materials Science & Technology, 2021, 93, 53. 129 Umakoshi Y, Yasuda H Y, Nakano T. Intermetallics, 1996, 4, S65. 130 Xu X S, Ding H S, Li W, et al. Materials Characterization, DOI:10. 1016/j. matchar. 2021. 111444. |
[1] |
WANG Zijian, SUN Shulei, XIAO Han, RAN Xudong, CHEN Qiang, HUANG Shuhai, ZHAO Yaobang, ZHOU Li, HUANG Yongxian. Research Status of Additive Friction Stir Deposition[J]. Materials Reports, 2024, 38(9): 22100039-16. |
|
|
|
|