INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Anti-hydration Measures and Mechanism of CaO Material for Clean Metal Smelting |
GU Qiang1,2, MA Weikui1,2, QIAN Fan1,2, LIU Guoqi1,2,*, LI Hongxia1,2,*
|
1 State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039, Henan, China 2 Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, Henan, China |
|
|
Abstract CaO is the most promising refractories for clean metal smelting. Its application can promote the high-quality development of China's high-end manufacturing industry. However, easy hydration is the main limiting factor for its application. This article reviews the measures to improve the hydration properties of CaO materials, including high temperature calcination method, additive method, and surface treatment method, and analyzes their mechanism and evaluates their effect. Finally, it is pointed out that the use of multi-method synergy would become an important direction to improve the hydration resistance of CaO, and starting from the crystal structure can fundamentally solve the problem of easy hydration of CaO.
|
Published: 25 July 2024
Online: 2024-08-12
|
|
Fund:National Natural Science Foundation of China (51932008) and Zhongyuan Science and Technology Innovation Leader (204200510011). |
|
|
1 Xiao G H, Dong H, Wang M Q, et al. Materials for Mechanical Enginee-ring, 2010, 34(11), 14 (in Chinese). 肖国华, 董瀚, 王毛球, 等. 机械工程材料, 2010, 34(11), 14. 2 Spriestersbach D, Grad P, Kerscher E. International Journal of Fatigue, 2014, 64,114. 3 Mirjam B L, Robert T D. Engineering Failure Analysis, 2013, 33, 430. 4 Sun C Q, Lei Z Q, Xie J J, et al. International Journal of Fatigue, 2013, 48, 19. 5 Feng W, Liu W J. Physics Examination and Testing, 2015,33(6), 49 (in Chinese). 冯文博, 刘文玖. 物理测试, 2015, 33(6), 49. 6 Zhang C F. Metallurgy and Materials, 2020, 40(4), 2 (in Chinese). 张春富. 冶金与材料, 2020, 40(4), 2. 7 Fu J, Wang P, Xu J H, et al. Special Steel, 1998, 19(6), 31 (in Chinese). 傅杰, 王平, 徐君浩, 等. 特殊钢, 1998, 19(6), 31. 8 Gong W. Control of oxygen content and non-metallic inclusionsin conti-nuous casting bearing steels. Ph.D. Thesis, Northeastern University, China, 2006 (in Chinese). 龚伟.连铸轴承钢氧含量和夹杂物控制研究. 博士学位论文, 东北大学, 2006. 9 Wang J M, Yang S Y. Nickel-base cast superalloy, Metallurgical Industry Press, China, 2014, pp.136 (in Chinese). 王建明, 杨舒宇. 镍基铸造高温合金, 冶金工业出版社, 2014, pp.136. 10 Zhong X C. Refractories, 2003, 37(1), 1 (in Chinese). 钟香崇. 耐火材料, 2003, 37(1), 1. 11 Jones J A T, Bowman B, Lefrank P A. The Making, Shaping and Treating of Steel, 1998, 1, 525. 12 Wang C X, Qin Y J. Refractories for secondary refining vessels, Metallurgical Industry Press, China, 1996, pp.137 (in Chinese). 王诚训,亲永杰. 炉外精炼用耐火材料, 冶金工业出版社, 1996, pp.137. 13 Wang X D, Chen S J, Zhang H Y, et al. Refractories, 2004, 38(2), 88 (in Chinese). 王学达, 陈树江, 张红鹰, 等. 耐火材料, 2004, 38(2), 88. 14 Sundin S. Metal Powder Report, 2007, 62(5), 8. 15 Soltanieh M , Payandeh Y. Journal of Iron and Steel Research Internatio-nal, 2005, 12(5), 7. 16 Wang M M,Yang Y H, Wang D H, et al. Rare Metal Materials and Engineering, 2018, 47(12),156 (in Chinese). 王慢慢, 杨彦红, 王道红, 等. 稀有金属材料与工程, 2018, 47(12),156. 17 Harkki J, Rytila R, Palander M, et al. Scandinavian Journal of Metallurgy, 1990, 19, 116. 18 Harkki J, Palander M. Interceram, 1991, 40(5), 284. 19 Salman G K, Ali N, Aziz S, et al. Ceramics International, 2016, 42(10), 12270. 20 Li Z, Zhang S, Lee W E. International Materials Reviews, 2008, 53(1), 1. 21 Grasa G S, Abanades J C, Alonso M, et al. Chemical Engineering Journal, 2008, 137(3), 561. 22 Li H X. Refractory handbook, Metallurgical Industry Press, China, 2007, pp.289 (in Chinese). 李红霞. 耐火材料手册, 冶金工业出版社, 2007, pp.289. 23 Bhattacharya T K, Ghosh A, Das S K. Ceramics International, 2001, 27(4), 455. 24 Glasson D R. Journal of Applied Chemistry, 1958, 8(12), 793. 25 Maciel-Camacho A, Hernandez H R, Awd H, et al. ISIJ International, 1997, 37(5), 468. 26 Shi H, Zhao Y, Li W. Cement and Concrete Research, 2002, 32(5), 789. 27 Othman A G M, Abou El-Maaty M A, Serry M A. Ceramics International, 2001, 27(7), 801. 28 Wong L L, Bradt R C. American Ceramic Society Bulletin, 1990, 69, 1184. 29 Wong L L, Bradt R C. Journal of the American Ceramic Society, 1995, 78(6), 1611. 30 Coble R L. Journal of the American Ceramic Society, 1958, 41(2), 55. 31 Fu Z D, Zhao J, Dai Y Q, et al. Materials Reports, 2021, 35(1), 1077(in Chinese). 付振东, 赵健, 戴叶婧, 等. 材料导报, 2021, 35(1), 1077. 32 Zhou Q, Xu T X, Guo W L, et al. Bulletin of the Chinese Ceramic Society, 2004, 23(1),81(in Chinese). 邹强, 徐廷献, 郭文利, 等. 硅酸盐通报, 2004, 23(1), 81. 33 Lee J K, Choi H S, Lee S J. Journal of Ceramic Processing Research, 2012, 13(5), 646. 34 Yeprem H A. Journal of the European Ceramic Society, 2007, 27(2-3), 1651. 35 Wei Y W, Li N, Chen F Y. Journal of Iron and Steel Research-International, 2003, 10(4), 4. 36 Yu H, Han B Q, Zhang T, et al. Journal of Ceramics, 2017, 38(5), 700 (in Chinese). 余辉, 韩兵强, 张涛, 等. 陶瓷学报, 2017, 38(5), 700. 37 Xiao G Q, Yang X H. Refractories, 1998, 32(2), 77(in Chinese). 肖国庆, 杨兴华. 耐火材料, 1998, 32(2), 77. 38 Kim D K, Cho C H, Goo B J, et al. Journal of the Korean Ceramic Society, 2002, 39(6), 528. 39 Miskufova A, Havlik T, Bitschnau B, et al. Ceramics-Silikáty, 2015, 59(2), 115. 40 Shahraki A, Ghasemi-Kahrizsangi S, Nemati A. Materials Chemistry and Physics, 2017, 198, 354. 41 Ghosh A, Bhattacharya T K, Mukherjee B, et al. Ceramics International, 2001, 27(2), 201. 42 Kakali G, Parissakis G, Bouras D. Cement and Concrete Research, 1996, 26(10), 1473. 43 Hou G H. The chemistry of cement clinker formation containing high amount of C3S and the structure of doped C3S. Ph.D. Thesis, Nanjing University of Technology, China, 2006 (in Chinese). 侯贵华. 高C3S水泥熟料形成化学与掺杂C3S结构研究. 博士学位论文, 南京工业大学,2006. 44 Ghosh A, Bhattacharya T K, Maiti S, et al. Ceramics International, 2004, 30(8), 2117. 45 Wei J, Han B, Wang X, et al. Materials Chemistry and Physics, 2020, 254, 123413. 46 Cahoon H P, Johnson P D. Journal of the American Ceramic Society, 1951, 34(8), 230. 47 Yamamoto O. Transactions of the Materials Research Society of Japan, 1999, 24, 679. 48 Kahrizsangi S G, Dehsheikh H G. Boletín De La Sociedad Española De Cerámica Y Vidrio, 2017, 56(2), 83. 49 Rodrıguez J L, Rodrıguez M A, De A S, et al. Journal of the European Ceramic Society, 2001, 21(3), 343. 50 Chen M, Yamaguchi A. Journal of the Ceramic Society of Japan, 2002, 110(1288), 1058. 51 Chen M, Lu C, Yu J. Journal of the European Ceramic Society, 2007, 27(16), 4633. 52 Chen G, Li B, Zhang H, et al. International Journal of Applied Ceramic Technology, 2016, 13(6), 1173. 53 Usui K, Kaneyasu A, Yoshida A. Taikabutsu, 1995, 47, 114. 54 Ghasemi-Kahrizsangi S, Shahraki A, Farooghi M. Iranian Journal of Science and Technology & Transactions A: Science, 2018, 42(2), 567. 55 Ghoneim N M, Mandour M A, Serry M A. Ceramics International, 1989, 15(6), 357. 56 Ghoneim N M, Mandour M A, Serry M A. Ceramics International, 1990, 16(4), 215. 57 Bhattacharya T K, Ghosh A, Tripathi H S, et al. Bulletin of Materials Science, 2003, 26, 703. 58 Zhang H, Zhao H, Chen J, et al. Advances in Materials Science and Engineering, DOI: 10.1155/2013/673786 59 Kaneyasu A, Arita Y, Yoshida A, et al. Taikabutsu, 1998, 50, 475. 60 Chen M, Wang N, Yu J K, et al. Developments in Chemical Engineering and Mineral Processing, 2006, 14(3-4), 409. 61 Smith D E, Tien T Y, Van Vlack L H. Journal of the American Ceramic Society, 1969, 52(8), 459. 62 Yu Y W. A study on slag resistance and anti-hydration properties of calcia-rich magnesia-calcia refractories used for VOD. Ph.D. Thesis, Tianjin University, China, 2005. 于燕文. VOD炉用高钙镁钙材料抗渣侵蚀及抗水化性能研究. 博士学位论文, 天津大学, 2005. 63 Li X M, Yang J. Foundry Technology, 2007, 28(4), 468 (in Chinese). 李小明, 杨军. 铸造技术, 2007, 28(4), 468. 64 Yu H, Han B Q, Wei Y W, et al. Refractories, 2017, 51(2), 100 (in Chinese). 余辉, 韩兵强, 魏耀武, 等. 耐火材料, 2017, 51(2), 100. 65 Zhang H, Ding X F, Zhao H Z, et al. Journal of Synthetic Crystals, 2014, 43(1), 198 (in Chinese). 张寒, 丁雄风, 赵惠忠,等. 人工晶体学报, 2014, 43(1), 198. 66 Kacimi L, Simon-Masseron A, Ghomari A, et al. Comptes Rendus Chi-mie, 2006, 9(1), 154. 67 Oda Y, Takiuchi S, Yamoto I, et al. Taikabutsu, 1989, 41(7), 391. 68 Song H S, Kim C H. Cement and Concrete Research, 1990, 20(5), 815. 69 Maciel-Camacho A, Rodrfguez-Hernández H, Hills A W D, et al. ISIJ International, 1997, 37(5), 477. 70 Dheilly R M, Tudo J, Queneudec M. Journal of Materials Engineering and Performance, 1998, 7, 789. 71 Chen M, Ito S, Yamaguchi A. Journal of the Ceramic Society of Japan, 2002, 110(1282), 512. 72 Li Z H, Yin W, Kai X, et al. Fuel Processing Technology, 2016, 151, 101. 73 Chen S, Lu P, Chen G, et al. Journal of the American Ceramic Society, 2004, 87(12), 2164. 74 Wang H L, Cui Q Y, Xue Q H, et al. Refractories, 2010, 44(1), 67 (in Chinese). 王宏联, 崔庆阳, 薛群虎, 等. 耐火材料, 2010, 44(1), 67. 75 Gropyanov A V. Refractories and Industrial Ceramics, 2003, 44(2), 99. 76 Kaneyasu A, Yamamoto S, Yoshida A. Refractories(Tokyo), 1995, 47(12), 599. 77 Kaneyasu A, Yamamoto S, Yoshida A. Taikabutsu, 1996, 48, 474. 78 Ren K F, Yang J K, Wang C X, et al. Refractories, 2001, 35(3), 174 (in Chinese). 任魁锋, 杨景奎, 王诚训, 等. 耐火材料, 2001, 35(3), 174. 79 Li L. China Powder Science and Technology, 2006, 12(6), 31 (in Chinese). 李冷. 中国粉体技术, 2006, 12(6), 31. |
|
|
|