POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress in Plasma Modification to Enhance Interfacial Compatibility of Agro-forestry Biomass Composites |
LIU Xiaohan1,2, YANG Pei1,2, ZHOU Xiaoyan1,2,*
|
1 Collaborative Innovation Center for Efficient Processing and Utilization of Forestry Resources of Nanjing Forestry University, Nanjing 210037, China 2 School of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China |
|
|
Abstract The development of biomass-based composites is an important way to promote biomass resources to high-value, diversified, environmental and functional utilization. To this end, surface modification techniques for biomass materials as well as the influence mechanisms are the main research focus for the development of biomass-based composites. Plasma modification technology stands out from many modification methods by the advantages of high speed, high energy, high functionality and low pollution, thus, this promising technology has been widely used to improve the interfacial bonding properties of biomass-based composites. Based on the surface activation and etching effect, Plasma technology can improve the interfacial compatibility of biomass materials with other materials with different chemical properties, resulting in the enhanced physical and mechanical properties of biomass-based composites. This paper introduced the development of plasma modification technology in producing biomass-based composites, and summarized the modification mechanism of plasma technology. This work focused on disscussing recent advancements in plasma modification technology to enhance the interfacial compatibility of different composites, including wood-bamboo/resin composites, wood-bamboo/plastic composites, wood-bamboo/metal composites, and wood-bamboo/reinforced fiber composites. In the end, the development direction of plasma-modified agro-forestry biomass-based composites is prospected.
|
Published: 10 July 2024
Online: 2024-08-01
|
|
Fund:National Key Research and Development Program (2021YFD2200602),the National Natural Science Foundation of China (32271784, 32101460). |
|
|
1 Guo W B, Qi W J, Wang Z P, et al. Journal of China Agricultural University, 2021, 26(1), 143 (in Chinese). 郭文斌, 齐文静, 王志鹏, 等. 中国农业大学学报, 2021, 26(1), 143. 2 Li X R, Peng H Z, Niu S H, et al. Forests, 2022, 13(5), 712. 3 Guo X. Jet plasma treatment and bonding of polyethylene wood plastic composites. Master's Thesis, Northeast Forestry University, China, 2019 (in Chinese). 郭笑. 聚乙烯木塑复合材料的射流等离子体处理与胶接. 硕士学位论文, 东北林业大学, 2019. 4 Yan S. Surface ageing of polyethylene wood plastic composites treated by jet plasma. Master's Thesis, Northeast Forestry University, China, 2019 (in Chinese). 闫霜. 射流等离子体处理聚乙烯木塑复合材料的表面时效性研究. 硕士学位论文, 东北林业大学, 2019. 5 Chen H Y. Effects of low temperature radio-frequency oxygen and nitrogen plasmas on lignocellulosic materials. Ph. D Thesis. University of California, USA, 1989. 6 Ao G, Li D D, Zhu Q Y, et al. Journal of Synthetic Crystals, 2022, 51(8), 1406 (in Cinese). 敖刚, 李冬东, 朱倩钰, 等. 人工晶体学报, 2022, 51(8), 1406. 7 Zhang C, Fu W, Hu S, et al. IEEE Transactions on Plasma Science, 2021, 9, 154318. 8 Du G B, Hua Y K, Wang Z. China Wood Industry, 1998, 12(6), 4 (in Chinese). 杜官本, 华毓坤, 王真. 木材工业, 1998, 12(6), 4. 9 Agnes R. Denes, Mandla A. Holzforschung, 1999, 53, 318. 10 Chen H Y, Zavarin E. Journal of Wood Chemistry and Technology, 1990, 10(3), 387. 11 Du G B, Yang Z, Qiu J. Scientia Silvae Sinicae, 2004(2), 148 (in Chinese). 杜官本, 杨忠, 邱坚. 林业科学, 2004(2), 148. 12 Du G B, Hua Y K, Wang Z. Scientia Silvae Sinicae, 1999, 35(2), 5 (in Chinese). 杜官本, 华毓坤, 王真. 林业科学, 1999, 35(2), 5. 13 Barun S, Gupta, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2007, 302(1-3), 388. 14 Mao H, Zhou D, Wang S, et al. In: Conference Record of International Conference on Advanced Engineering Materials and Technology. Sanya, 2015, pp.1632. 15 Li Y, Yang X H, Lu K Y, et al. Journal of Nanjing Forestry University, 2014, 38(5), 7 (in Chinese). 李洋, 杨雪慧, 陆凯悦, 等. 南京林业大学学报:自然科学版, 2014, 38(5), 7. 16 Zhang J H. Surface modification of rice straw with plasma technology. Ph. D. Thesis, Nanjing Forestry University, China, 2010 (in Chinese). 张建红. 等离子体技术调控稻秸表面的研究. 博士学位论文, 南京林业大学, 2010. 17 Liu Y, Tao Y, Lv X Y, et al. Applied Surface Science, 2010, 257(3), 1112. 18 Zhang R, Tang L J, Qian Y, et al. Forestry and Grassland Machinery, 2010, 21(4), 4 (in Chinese). 章蓉, 汤丽娟, 钱滢, 等. 木材加工机械, 2010, 21(4), 4. 19 Xu X W, Zhou D G. Journal of Nanjing Forestry University, 2009(5), 4 (in Chinese). 徐信武, 周定国. 南京林业大学学报:自然科学版, 2009(5), 4. 20 Chen G H, Xiang S L, Zhou L Y. Journal of Central South University of Forestry & Technology, 2010, 30(8), 4 (in Chinese). 陈桂华, 向仕龙, 周鲁英. 中南林业科技大学学报, 2010, 30(8), 4. 21 Mei C T, Zhou X B, Zhu K A, et al. Journal of Nanjing Forestry University, 2009(6), 5 (in Chinese). 梅长彤, 周绪斌, 朱坤安, 等. 南京林业大学学报:自然科学版, 2009(6), 5. 22 Radetić M, Marković D. Plasma Processes and Polymers, 2022, 19(4), 2100197. 23 Odraskova M, Rahel J, Zahoranova A, et al. Plasma Chem Plasma Process, 2008, 28(2), 203. 24 Kelar J,ech J, Slavíek P. Acta Polytechnica, 2015, 55(2), 109. 25 Wolkenhauer A, Avramidis G, Hauswald E. Journal of Adhesion Science and Technology: the International Journal of Theoredtical and Basic Aspects of Adhesion Science and Its Applications in All Areas of Technology, 2008, (16), 22. 26 Song C L, Zhang Z T, Zhao W G, et al. Chemical Reaction Engineering and Technology, 2010, 26(2), 112 (in Chinese). 宋春莲, 张芝涛, 赵文光, 等. 化学反应工程与工艺, 2010, 26(2), 112. 27 Tang L J, Zhang R, Zhou X Y. Journal of Nanjing Forestry University(Natural Sciences Edition) , 2011, 35(2), 4 (in Chinese). 汤丽娟, 章蓉, 周晓燕, 等. 南京林业大学学报:自然科学版, 2011, 35(2), 4. 28 Cao Y Z. Mechanism of low temperature plasma modified wood veneer to achieve high adhesive efficiency. Ph. D. Thesis, Nanjing Forestry University, China, 2020 (in Chinese). 曹倚中. 低温等离子体改性木质单板高效胶合机理研究. 博士学位论文, 南京林业大学, 2020. 29 Zhang R, Zhou X Y, Tang L J, et al. Forestry and Grassland Machinery, 2013, 40(4), 24 (in Chinese). 章蓉, 周晓燕, 汤丽娟, 等. 木材加工机械, 2013, 40(4), 24. 30 Tang L J. Research on mechanism of veneer surface properties and the interfacial adhesion of plywood by means of cold plasma treatment. Ph. D. Thesis, Nanjing Forestry University, China, 2015 (in Chinese). 汤丽娟. 冷等离子体改性对木质单板表界面作用机理的研究. 博士学位论文, 南京林业大学, 2015. 31 Chen M Z, Chen Y, Thiphuong N, et al. Journal of Forestry Engineering, 2017, 2(5), 9 (in Chinese). 陈敏智, 陈燕, Thiphuong N, 等. 林业工程学报, 2017, 2(5), 9. 32 Chen W M, Zhou X Y, Zhang X T, et al. Progress in Organic Coatings, 2018, 125, 128. 33 Nie Q Y. Experimental studies on atmospheric pressure cold plasma jets. Ph. D. Thesis, Dalian University of Technology, 2010 (in Chinese). 聂秋月. 大气压冷等离子体射流实验研究. 博士学位论文, 大连理工大学, 2010. 34 Wei Z, Yca B, Pei Y, et al. Composite Structures, 2019, 226(15), 111203. 35 Yang D, Wang H H, Zheng B C, et al. Plasma Sources Science & Technology, 2022, 31(11), 115002. 36 Islam R, Xie S, Lekobou W, et al. Journal of Thermoplastic Composite Materials, 2018, 31(7), 946. 37 Wang H Y. Study on bonding performance and construct of nanomaterial of bamboo and wood treated by cold plasma. Ph. D. Thesis, Nanjing Forestry University, China, 2013 (in Chinese). 王洪艳. 冷等离子体处理对木竹材胶合性能及纳米材料构筑的影响研究. 博士学位论文, 南京林业大学, 2013. 38 Sánchez M L, Aperador W A, Capote G. Industrial Crops and Products, 2018, 125, 33. 39 Du G B, Sun Z B, Huang L R. Journal of Nanjing Forestry University(Natural Sciences Edition), 2007, 31(4), 4 (in Chinese). 杜官本, 孙照斌, 黄林荣. 南京林业大学学报:自然科学版, 2007, 31(4), 4. 40 Hu F Z. Material surface and interface, East China University of Techno-logy Press, China, 2007, pp.169 (in Chinese). 胡福增. 材料表面与界面, 华东理工大学出版社, 2007, pp.169. 41 Jamali A, Evans P D. Journal of Wood Chemistry and Technology, 2022, 42(5), 381. 42 Richard Wascher, Florian Bittner, Georg Avramidis, et al. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105821. 43 Jean-Michel Hardy, Olivier Levasseur, Mirela Vlad, et al. Applied Surface Science, 2015, 359, 137. 44 Zhang W. Research on the plasma-modified fiber reinforced laminated veneer lumber. Master's Thesis, Nanjing Forestry University, China, 2020 (in Chinese). 张伟. 等离子体改性纤维增强单板层积材的研究, 硕士学位论文, 南京林业大学, 2020. 45 Wang D F. Study on the depolymerization properties and mechanisms of chitosan and cotton cellulose by discharge plasma. Master's Thesis, Northwest Agricultural and Forestry University, China, 2022 (in Chinese). 王丹凤. 放电等离子体对壳聚糖和棉纤维素解聚性能和机制的研究. 硕士学位论文, 西北农林科技大学, 2022. 46 Vanholme R, Demedts B B, Morreel K, et al. Plant Physiology, 2010, 153(3), 895. 47 Lai C H, Yang C D, Jia Y, et al. Bioresource Technology, 2022, 355, 127255. 48 Gabriela N Pereira, Karina Cesca, Anelise Leal Vieira Cubas, et al. Trends in Food Science & Technology, 2021, 109, 365. 49 Wu Z, Chen S, Liang J, et al. Journal of Renewable Materials, 2021, 011(9). 50 Altgen D, Avramidis G, Viöl W. Wood Science and Technology, 2016, 50(6), 2117. 51 Cao Y Z, Zhou X Y, Chen M Z, et al. Holzforschung, 2018, 72(12). 52 Gholamiyan H, Gholampoor B, Hosseinpourpia R. Materials, 2022, 15(1), 370. 53 Wascher R, Avramidis G, Viöl W. Forests, 2021, 12(10), 1423. 54 Peng X R, Zhang Z K. Scientia Silvae Sinicae, 2018, 54(1), 90 (in Chinese). 彭晓瑞, 张占宽. 林业科学, 2018, 54(1), 90. 55 Ruslan R Safin, Ruslan Khasanshin, Nour R Galyavetdinov, et al. Coatings, 2021, 11, 918. 56 Wolkenhauer A, Avramidis G, Hauswald E, et al. International Journal of Adhesion and Adhesives, 2009, 29(1), 18. 57 Klébert S, Mohai M, Csiszár E. Coatings, 2022, 12(4), 487. 58 Wu Q R, Guan X, Lin J G, et al. Journal of Southwest Forestry University(Natural Sciences Edition) , 2017, 37(4), 6 (in Chinese). 巫其荣, 关鑫, 林金国, 等. 西南林业大学学报:自然科学, 2017, 37(4), 6. 59 Zhou X Y. Study about the characteristic of bamboo surface and interface by the treatment of low temperature plasma. Master's Thesis, Nanjing Forestry University, China, 2008 (in Chinese). 周晓芸. 低温等离子体改性后竹材表界面特性的研究, 硕士学术论文, 南京林业大学, 2008. 60 Huang H L, Xue L D, Lu X N, et al. Journal of Nanjing Forestry University(Natural Sciences Edition), 2006, 30(6), 023 (in Chinese). 黄河浪, 薛丽丹, 卢晓宁, 等. 低温等离子体处理对竹片表面胶合性能的影响. 南京林业大学学报(自然科学版), 2006, 30(6), 023. 61 Wang X, Cheng K J. Forests, 2020, 11(12), 1293. 62 Wu J, Yuan H, Wang W, et al. Construction and Building Materials, 2020, 269(4), 121269. 63 Rao J, Bao L, Wang B, et al. Composites Part B: Engineering, 2018, 138, 157. 64 Ai J. Study on characters of wheat straw fiber and technology of UFI wheat straw fiber board. Ph. D. Thesis, Northeast Forestry University , China, 2001 (in Chinese). 艾军. 麦秆纤维特性及脲醛树脂麦秆纤维板工艺的研究, 博士学位论文, 东北林业大学, 2001. 65 Yang K Y. Preparation and properties of typical biomass-polyethylene composites. Master's Thesis, Shandong University of Technology, China, 2016 (in Chinese). 杨科研. 典型生物质/聚乙烯复合材料制备与性能研究. 硕士学位论文, 山东理工大学, 2016. 66 Neasová B, Liška P, Kelar J, et al. Polymers, 2019, 11(3), 397. 67 Zhou X Y, Cao Y Z, Yang K, et al. Journal of Cleaner Production, 2020, 269, 122. 68 Tao Y. Study on durability of bonding joint for plasma treated wood/pol-yethylene composites. Master's Thesis, Northeast Forestry University, China, 2012 (in Chinese). 陶岩. 等离子体表面处理木粉/聚乙烯复合材料胶接接头的耐久性研究. 硕士学位论文, 东北林业大学, 2012. 69 Benedikt Hünnekens, Frauke Peters, Georg Avramidis, et al. Journal of Applied Polymer Science, 2016, 133(18), 43376. 70 Tang W B, Xie Z K, Wu E Q, et al. Guangdong Chemical Industry, 2020, 47(7), 3 (in Chinese). 唐文斌, 谢志昆, 伍二强, 等. 广东化工, 2020, 47(7), 3. 71 Yan S, Shang X Y, Di M W. Chemistry and Adhesion, 2019, 41(1), 5 (in Chinese). 闫霜, 尚欣宇, 邸明伟. 化学与粘合, 2019, 41(1), 5. 72 Shi S K, Cai X, Zhou X Y, et al. Journal of Nanjing Forestry University ( Natural Sciences Edition) , 2016, 40(5), 5 (in Chinese). 史书凯, 蔡欣, 周晓燕, 等. 南京林业大学学报:自然科学版, 2016, 40(5), 5. 73 Wallenhorst L, Gurău L, Gellerich A, et al. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2018, 434, 1183. 74 Jnido G, Ohms G, Viöl W. Coatings, 2021, 11(2), 183. 75 Jnido G, Ohms G, Viöl W. Coatings. 2019, 9(7), 441. 76 Dahle S, Srinivasa K, Žigon J, et al. Frontiers in Materials, 2022, 8, 796474. 77 Gascón-Garrido P, Thévenon M, Mainusch N, et al. International Biodeterioration & Biodegradation, 2017, 120, 84. 78 Wang H Y, Li Q, Yi S F, et al. Journal of Northwest A & F University(Nat. SCI. Ed), 2019, 47(9), 8 (in Chinese). 王洪艳, 李菁, 逸邵飞. 西北农林科技大学学报:自然科学版, 2019, 47(9), 8. 79 Wang H Y, Du G B, Zheng R B. Journal of Central South University of Forestry & Technology, 2014, 34(3), 117 (in Chinese). 王洪艳, 杜官本, 郑荣波. 中南林业科技大学学报, 2014, 34(3), 117. 80 Vignesh K, Vijayalakshmi K A, Karthikeyan N. Surface Review and Letters, 2017, 24(3), 1750032. 81 Dionmbete G, Miloh N, Tarkwa J B, et al. Biomass Conv Bioref, DOI: https://doi. org/10. 1007/s13399-023-04246-1. 82 Shen G L, Hu G K. Mechanics of composite materials, Tsinghua University Press, China, 2006, pp.16 (in Chinese). 沈观林, 胡更开. 复合材料力学, 清华大学出版社. 2006, pp.16. 83 Zhang W, Cao Y Z, Yang P, et al. Composite Structures, 2019, 226(15), 111203. 84 Zhang J, Study on modification of carbon fiber and properties of its composites. Master's Thesis, Tianjin Polytechnic University, China, 2016 (in Chinese). 张杰. 碳纤维改性及其复合材料性能研究, 硕士学位论文, 天津工业大学, 2016. 85 Liu X D, Wu L, Kong L, et al. Journal of Shang Hai Jiao Tong University, 2019, 53(8), 7 (in Chinese). 刘晓东, 吴磊, 孔谅, 等. 上海交通大学学报, 2019, 53(8), 7. 86 Oporto G S, Gardner D J, Bernhardt G, et al. Composite Interfaces, 2009, 16(7), 847. |
|
|
|