METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Integrated Learning Design Method for Solid-Solution Alloys Based on First-principles Calculations |
ZHANG Qixiang1, YUAN Junhao1, LI Zhen2, LI Wenjie3, SUN Dan3, WANG Qing1,*, DONG Chuang1
|
1 Key Laboratory of Materials Modification by Laser,Ion and Electron Beams (Ministry of Education),School of Materials Science and Engineering,Dalian University of Technology,Dalian 116024, Liaoning, China 2 School of Mechanical Engineering,Dalian University of Technology,Dalian 116024,Liaoning, China 3 Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China,Chengdu 610213,China |
|
|
Abstract The first-principles method based on density functional theory (DFT) gives a more reliable calculation of the basic properties of alloys after considering the characteristics of chemical short-range orders (CSRO) of solid solutions.This work embeds the cluster-plus-glue-atom structural model describing the CSRO into first-principles calculations to obtain basic physical properties data for a series of alloys.Then a data management system was constructed to build a composition and performance database.Furthermore,multiple machine learning algorithms were used to construct prediction models for alloy composition and performance,and comparative analysis was performed.Based on this,the optimal algorithm was selected to accurately predict the performance of alloys and achieve composition design guided by performance objectives.Finally,an integrated learning design method for solid solution alloys based on first-principles calculations is integrated,and the visualization program software is developed.The method is expected to significantly improve the efficiency of the development of high-performance advanced alloy materials.
|
Published: 10 July 2024
Online: 2024-08-01
|
|
Fund:National Foundation Strengthening Program (2021-JCJQ-ZD-030-12). |
|
|
1 George E P, Raabe D, Ritchie R O. Nature Reviews Materials, 2019, 4, 515. 2 Inoue A, Shen B L, Chang C T. Acta Materialia, 2004, 52(14), 4093. 3 Yeh J W, Chen S K, Lin S J. Advanced Engineering Materials, 2004, 6(5), 299. 4 Long M, Rack H J. Biomaterials, 1998, 19, 1621. 5 Hohenberg P, Kohn W. Physical Review, 1964, 136(3B), B864. 6 Kohn W, Sham L J. Physical Review, 1965, 140(4A), A1133. 7 Marshal A, Pradeep K G, Music D, et al. Scientific Reports, 2019, 9(1), 7864. 8 Yu P, Zhuang Y, Chou J P, et al. Scientific Reports, 2019, 9(1), 10940. 9 Zhang R P, Zhao S T, Ding J, et al. Nature, 2020, 581(7808), 283. 10 Santodonato L J, Zhang Y, Feygenson M, et al. Nature Communications, 2015, 6(1), 5964. 11 Ding D J, Yu Q, Asta M, et al. Proceedings of the National Academy of Sciences, 2018, 115(36), 8919. 12 Sobieraj D, Wróbel J S, Rygier T, et al. Physical Chemistry Chemical Physics, 2020, 22(41), 23929. 13 Chen S, Aitken Z H, Pattamatta S, et al. Acta Materialia, 2021, 206, 116638. 14 Guo W, Dmowski W, Noh J, et al. Metallurgical and Materials Transactions A, 2013, 44(5), 1994. 15 Singh P, Smirnov A V, Johnson D D. Physical Review B, 2015, 91(22), 224204. 16 Tian F Y, Lin D Y, Gao X Y, et al. The Journal of Chemical Physics, 2020, 153(3), 034101. 17 Zunger A, Wei S H, Ferreira L G. Physical Review Letters, 1990, 65(3), 35. 18 Wu J W, Yang Z, Xian J W, et al. Frontiers in Materials, 2020, 7, 590143. 19 Hong H L, Wang Q, Dong C, et al. Scientific Reports, 2014, 4(1), 7065. 20 Pang C, Jiang B, Shi Y, et al. Journal of Alloys and Compounds, 2015, 652, 63. 21 Ma Y, Wang Q, Li C L, et al. Scripta Materialia, 2018, 144, 64. 22 Dong C, Wang Q, Qiang J B, et al. Journal of Physics D: Applied Physics, 2007, 40(15), R273. 23 Ma Y, Wang Q, Jiang B B, et al. Acta Materialia, 2018, 147, 213. 24 Li Z, Zhang R, Zha Q, et al. Progress in Natural Science: Materials International, 2014, 24(1), 35. 25 Wang Q, Han J C, Liu Y F, et al. Scripta Materialia, 2021, 190, 40. 26 Yuan J H, Liu Y F, Li Z, et al. Journal of Phase Equilibria and Diffusion, 2021, 42, 647. 27 Wang W Y, Shang S L, Wang Y, et al. npj Computational Materials, 2017, 3, 23. 28 Wu W, Sun Q. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(10), 58(in Chinese). 吴炜, 孙强. 中国科学:物理学 力学 天文学, 2018, 48(10), 58. 29 Liu L M. The Journal of New Industrialization, 2015, 5(12), 71 (in Chinese). 刘利民. 新型工业化, 2015, 5(12), 71. 30 Kirklin S, Saal J E, Meredig B, et al. npj Computational Materials, 2015, 1(1), 15010. 31 Saal J E, Kirklin S, Aykol M, et al. JOM (Journal of Occupational Medicine and Toxicology), 2013, 65(11), 1501. 32 Wang D S, Amsler M, Vinay I H, et al. Acta Materialia, 2018, 158, 65. 33 Zhu D Q, Wu L. Modern Distance Education Research, 2019, 31(6), 14 (in Chinese). 朱德全, 吴虑. 现代远程教育研究, 2019, 31(6), 14. 34 Shen C G, Wang C C, Wei X L, et al. Acta Materialia, 2019, 179, 201. 35 Chen T Q, Guestrin C. In:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, San Francisco California, 2016, pp.785. 36 Davis L. Handbook of genetic algorithms, Van Nostrand Reinhold, New York, 1991. 37 Yang F, Li Z, Wang Q, et al. npj Computational Materials, 2020, 6(1), 101. 38 Thomas H. An Introduction to statistics with Python, Springer International Publishing AG, Switzerland, 2022. 39 Kreibich J A. Using SQLite, O'Reilly Media, 2010. 40 Pedregosa F, Varoquaux G, Gramfort A, et al. Journal of Machine Learning Research, 2011, 12, 2825. 41 Pan J, Yoshikawa A, Yamamura M. In:2022 4th International Conference on Communications, Information System and Computer Engineering (CISCE). Shenzhen, China, 2022. 42 Takeuchi A, Inoue A. Materials Transactions, 2005, 46(12), 2817. 43 Jiang B B, Wang Q, Dong C, et al. Scientific Reports, 2019, 9(1), 3404. 44 Pang C, Wang Q, Zhang R Q, et al. Materials Science and Engineering A, 2015, 626, 369. 45 Kresse G, Furthmüller J. Computational Materials Science, 1996, 6(1), 15. 46 Kresse G, Furthmüller J. Physical Review B, 1996, 54(16), 11169. 47 Kresse G, Hafner J. Physical Review B, 1993, 47, 588. 48 Kresse G, Hafner J. Physical Review B, 1994, 49, 14251. 49 Hall S R, Allen F H, Brown I D. Acta Crystallographic Section A, 1991, A47, 655. 50 Dan Porter. Dans_Diffraction(v1. 8. 2), https:∥doi. org/10. 5281/zenodo. 3859501. 51 Wang V, Xu N, Liu J C, et al. Computer Physics Communications, 2021, 267, 108033. 52 McKinney Wes. Python for data analysis, second edition, O'Reilly Media, 2017. 53 Yuan J H, Wang Q, Li Z, et al. Computational Materials Science, 2021, 194, 110472. 54 Breiman L. Machine Learning, 2001, 45(1), 5. 55 Hearst M A, Dumais S T, Osuna E, et al. IEEE Intelligent Systems, 1998, 13(4), 18. 56 Claesen M, Moor B D. In:The XI Metaheuristics International Conference in Agadir. Morocco, 2015. 57 Akiba T, Sano S, Yanase T, et al. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, 2019, pp.2623. 58 Monkhorst H J, Pack J D. Physical Review B, 1976, 13, 5188. 59 BLÖCHL P E. Physical Review B, 1994, 50, 17953. 60 Shen C G, Wang C C, Wei X L, et al. Acta Materialia, 2019, 179, 201. 61 Yuan J H, Dong D D, Wang Q, et al. Rare Metal Materials and Engineering, 2020, 49(1), 225(in Chinese). 苑峻豪, 董丹丹, 王清, 等. 稀有金属材料与工程, 2020, 49(1), 225. 62 Bostrom W A. Development and properties of uranium-base alloys corrosion resistant in high temperature water. Part I. alloys without protective cladding, Westinghouse Electric Corp. Atomic Power Div., Pittsburgh, 1955. |
|
|
|