INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Preparation and Resistive Switching Mechanism of Rutile TiO2 Nanowire Memristor |
YU Zhiqiang1,2,†,*, XU Jiamin1,†, HAN Xu1, CHEN Cheng1, QU Xinru1, TANG Jin1, SUN Zijun1, XU Zhimou2
|
1 Faculty of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China 2 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract In this work, the one-dimensional ordered rutile TiO2 nanowire arrays were fabricated by a facile hydrothermal process. The rutile TiO2 nanowire memory device with the Au/TiO2/FTO structure has been prepared. The resistive switching mechanism of the Au/TiO2/FTO device has been studied systematically and the nonlinear resistive switching model modified by oxygen vacancies has been developed. The Au/TiO2/FTO device indicates a nonvolatile bipolar resistive switching characteristic. A high resistance ratio in excess of two orders of magnitude was obtained in the TiO2 nanowire-based Au/TiO2/FTO device. Furthermore, the resistive switching behaviors of the TiO2 nanowire memory device are modulated by the trap regulated SCLC mechanism in the high resistance state and the Ohmic conduction mechanism in the low resistance state, respectively. In addition, the nonlinear ion-drift model adjusted by oxygen vacancies has been proposed, which has been suggested to be responsible for the nonvolatile resistive switching behavior of the Au/TiO2/FTO device. This work demonstrates that the Au/TiO2/FTO device may be a potential candidate for future nonvolatile memory applications.
|
Published: 10 July 2024
Online: 2024-08-01
|
|
Fund:National Natural Science Foundation of China (61805053), the Guangxi Science and Technology Project (AD19110038), the Scientific Research Foundation of Guangxi University of Science and Technology (19Z07) and the Innovation Project of Guangxi Graduate Education (YCSW2021135). |
|
|
1 Chua L O. IEEE Transactions on Circuit Theory, 1971, 18, 507. 2 Strukov D B, Snider G S, Stewart D R, et al. Nature, 2008, 453, 80. 3 Yang J J, Pickett M D, Li X, et al. Nature Nanotechnology, 2008, 3(7), 429. 4 Kim S, Lee J, Ling L, et al. Advanced Materials, 2022, 34(6), 2106913. 5 Chen J, Wu Y L, Zhu K L, et al. Electrochimica Acta, 2019, 316, 133. 6 Xiao M, Musselman K P, Duley W W, et al. ACS Applied Materials & Interfaces, 2017, 9, 4808. 7 Long S B, Liu Q, Lyu H B, et al. Scientia Sinica Physica, Mechanica & Astronomica, 2016, 46(10), 107311(in Chinese). 龙世兵, 刘琦, 吕杭炳, 等. 中国科学: 物理学力学天文学, 2016, 46(10), 107311. 8 Hoskins B D, Adam G C, Strelcov E, et al. Nature Communications, 2017, 8, 1972. 9 Yu Z Q, Liu M L, Lang J X, et al. Acta Physica Sinica, 2018, 67(15), 157302 (in Chinese). 余志强, 刘敏丽, 郎建勋, 等. 物理学报, 2018, 67(15), 157302. 10 Ebenhoch C, Kalb J L, Lim J, et al. ACS Applied Materials & Interfaces, 2020, 12, 23363. 11 Persson K M, Ram M S, Kilpi O P, et al. Advanced Electronic Materials, 2020, 6(6), 2000154. 12 Mahmoud N A, Maximilian S, Brian C O, et al. Nano Letters, 2021, 21(6), 2666. 13 Gianluca M, Michael L, Zheng M, et al. Nature Communications, 2018, 9, 5151. 14 Hsu C C, Wang S Y, Lin Y S, et al. Journal of Alloys and Compounds, 2019, 779, 609. 15 You B K, Park W I, Kim J M, et al. ACS Nano, 2014, 9, 9492. 16 Huang C H, Chang W C, Huang J S, et al. Nanoscale, 2017, 9, 6920. 17 Sun Y M, Song C, Yin J, et al. Applied Physics Letters, 2019, 114, 193502. 18 Younis A, Chu D W, Li S A. Applied Physics Letters, 2013, 103, 253504. 19 Zhang P, Gao C X, Lv F Z, et al. Applied Physics Letters, 2014, 105, 152904. 20 Liu Q, Guan W H, Long S B, et al. Applied Physics Letters, 2008, 92, 012117. 21 Lee J H, Schell W, Zhu X J, et al. ACS Applied Materials & Interfaces, 2019, 11, 11579. 22 Kelly C O, Fairfield J A, Boland J J. ACS Nano, 2014, 8(11), 11724. 23 Lin L, Liu L, Musselman K, et al. Advanced Functional Materials, 2016, 26, 5979. 24 Xiao M, Musselman K P, Duley W W, et al. Nano-Micro Letters, 2017, 9(2), 15. 25 Yu Z Q, Qu X P, Yang W P, et al. Journal of Alloys and Compounds, 2016, 688, 37. 26 Liu B, Aydil E S. Journal of the American Chemical Society, 2009, 131, 3985. 27 Su C, Liu L, Zhang M, et al. CrystEngComm, 2012, 14, 3989. 28 Ge J, Chaker M. ACS Applied Materials & Interfaces, 2017, 9, 16327. 29 Alagoz H S, Chow K H, Jung J. Applied Physics Letters, 2019, 114, 163502. 30 Zhang F, Gan X Y, Li X M, et al. Electrochemical and Solid-State Letters, 2011, 14 (10), H422. 31 Sun B, Li Q L, Zhao W X, et al. Journal of Nanoparticle Research, 2014, 16, 2389. 32 Yu Y T, Wang C Q, Jiang C, et al. Journal of Alloys and Compounds, 2021, 868, 159194. 33 Chu D W, Younis A, Li S A. Journal of Physics D: Applied Physics, 2012, 45, 355306. 34 Wang H J, Zhu Y Y, Fu D J. Journal of Alloys and Compounds, 2017, 695, 2669. 35 Berdan R, Prodromakis T, Salaoru I, et al. Applied Physics Letters, 2012, 101, 243502. 36 Tang Z S, Fang L, Xu N, et al. Journal of Applied Physics, 2015, 118, 185309. 37 Yu Y M, Yang F, Mao S S, et al. Chemical Physics Letters, 2018, 706, 477. 38 Bogle K A, Bachhav M N, Deo M S, et al. Applied Physics Letters, 2009, 95, 203502. 39 Park J, Biju K P, Jung S, et al. IEEE Electron Device Letters, 2011, 32(4), 476. 40 Zou L L, Hu W, Xie W, et al. Journal of Alloys and Compounds, 2017, 693, 1180. 41 Fu L P, Song X Q, Gao X P, et al. Chinese Physics B, 2021, 30(1), 016103. |
|
|
|