INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of the Use of Functionalized MXene in Lithium-Sulfur Batteries |
JIANG Yu1,2, YANG Rong1,2,*, ZHANG Qianwei1,2, FAN Chaojiang1,2, DONG Xin1,2, JIANG Bailing2, YAN Yinglin1
|
1 China International Research Center for Composite and Intelligent Manufacturing Technology, Xi'an University of Technology, Xi'an 710048, China 2 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China |
|
|
Abstract As a rising two-dimensional conductive material, MXene has attracted researchers' interest in the design and application of electrodes and electrolytes of energy storage devices. In recent years, the performance of lithium sulfur batteries have significantly improved for the excellent conductivity of MXene material and its adsorption to polysulfides. The functionalized design of MXene can avoid the defects of self-stacking, regulate the adsorption strength of polysulfides, and catalyze the redox reaction of polysulfides. From the perspective of functionalized MXene, the main preparations and their influence on the surface functional group of MXene are reviewed. The adsorption to polysulfides and mechanism of shuttle effect inhibition, and the enhancement mechanism of redox kinetics of functionalized MXene are analyzed. The possible problems and modification prospects of MXene in the application of lithium sulfur batteries are discussed.
|
Published: 25 June 2024
Online: 2024-07-17
|
|
Fund:National Natural Science Foundation of China (51974242), Science and Technology Department of Shaanxi Provincial Government (2024GX-YBXM-33), the Key R & D Program of Xianyang Science and Technology Bureau ( 2021ZDYF-GY-0029), and General Programs of China Postdoctoral Science Foundation(2019M653706). |
|
|
1 Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058), 928. 2 Tarascon J M, Armand M. Nature, 2001, 414(6861), 359. 3 Manthiram A, Fu Y, Chung S H, et al. Chemical Reviews, 2014, 114(23), 11751. 4 Wang Z, Shen J, Liu J, et al. Advanced Materials, 2019, 31(33), 2228. 5 Mikhaylik Y V, Akridge J R. Journal of the Electrochemical Society, 2004, 151(11), A1969. 6 Shen J, Xu X, Liu J, et al. Advanced Energy Materials, 2021, 11(26), 673. 7 Di Donato G, Ates T, Adenusi H, et al. Batteries & Supercaps, 2022, 5(7), 97 8 Lukatskaya M R, Mashtalir O, Ren C E, et al. Science, 2013, 341(6153), 1502. 9 Liang X, Nazar L F. 2D metal carbides and nitrides (MXenes), Springer Nature Press, USA, 2019, pp.381. 10 Zhang C, Cui L, Abdolhosseinzadeh S, et al. Information, 2020, 2(4), 613. 11 Wei C, Tao Y, An Y, et al. Advanced Functional Materials, 2020, 30(45), 4613. 12 Zhang Y L, Yan Y, Qiu H, et al. Journal of Materials Science & Technology, 2022, 103, 42. 13 Naguib M, Barsoum M W, Gogotsi Y. Advanced Materials, 2021, 33(39), 3393. 14 Alhabeb M, Maleski K, Anasori B, et al. Chemistry of Materials, 2017, 29(18), 7633. 15 Lukatskaya M R, Bak S M, Yu X, et al. Advanced Energy Materials, 2015, 5(15), 589. 16 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23(37), 4248. 17 Lei J C, Zhang X, Zhou Z. Frontiers of Physics, 2015, 10(3), 276. 18 Huang Y, Lu Q, Wu D, et al. Carbon Energy, 2022, 4(4), 598. 19 Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Nature, 2014, 516(7529), 78. 20 Li Y, Shao H, Lin Z, et al. Nature Materials, 2020, 19(8), 894. 21 Ghazaly A E, Ahmed H, Rezk A R, et al. ACS Nano, 2021, 15(3), 4287. 22 Zhang T, Pan L, Tang H, et al. Journal of Alloys and Compounds, 2017, 695, 818. 23 Feng A, Yu Y, Jiang F, et al. Ceramics International, 2017, 43(8), 6322. 24 Zheng W, Yang L, Zhang P G, et al. Materials Reports, 2018, 32(15), 2513 (in Chinese). 郑伟, 杨莉, 张培根, 等. 材料导报, 2018, 32(15), 2513. 25 Kumar J A, Prakash P, Krithiga T, et al. Chemosphere, 2022, 286, 131607. 26 Sun W, Shah S, Chen Y, et al. Journal of Materials Chemistry A, 2017, 5(41), 21663. 27 Pang S Y, Wong Y T, Yuan S, et al. Journal of the American Chemical Society, 2019, 141(24), 9610. 28 Yang S, Zhang P, Wang F, et al. Angewandte Chemie, 2018, 130(47), 15717. 29 Li M, Lu J, Luo K, et al. Journal of the American Chemical Society, 2019, 141(11), 4730. 30 Li Y B, Shao H, Lin Z F, et al. Nature Materials, 2020, 19(8), 894. 31 Kamysbayev V, Filatov A S, Hu H C, et al. Science, 2020, 369(6506), 979 32 Kang K, Meng Y S, Breger J, et al. Science, 2006, 311(5763), 977. 33 Gogotsi Y. Nature Materials, 2015, 14(11), 1079. 34 Xu C, Wang L, Liu Z, et al. Nature Materials, 2015, 14(11), 1135. 35 Geng D, Zhao X, Chen Z, et al. Advanced Materials, 2017, 29(35), 72. 36 Yu Z, Shao Y, Ma L, et al. Advanced Materials, 2022, 34(7), 618. 37 Liang Z, Shen J, Xu X, et al. Advanced Materials, 2022, 34(30), 102. 38 Yin Y X, Xin S, Guo Y G, et al. Angewandte Chemie-International Edition, 2013, 52(50), 186. 39 Zhao Q, Zhu Q, Liu Y, et al. Advanced Functional Materials, 2021, 31(21), 457. 40 Liang J, Sun Z H, Li F, et al. Energy Storage Materials, 2016, 2, 76. 41 Zhang Q, Zhang X F, Xiao Y H, et al. ACS Omega, 2020, 5(45), 272. 42 Liang X, Garsuch A, Nazar L F. Angewandte Chemie, 2015, 127(13), 3979. 43 Liang X, Rangom Y, Kwok C Y, et al. Advanced Materials, 2017, 29(3), 3040. 44 Liu K, Fan Y, Ali A, et al. Nanoscale, 2021, 13(5), 2963. 45 Meng X, Sun Y, Yu M, et al. Small Science, 2021, 1(9), 21. 46 Sim E S, Chung Y C. Applied Surface Science, 2018, 435, 210. 47 Sim E S, Yi G S, Je M, et al. Journal of Power Sources, 2017, 342, 64. 48 Rao D, Zhang L, Wang Y, et al. Journal of Physical Chemistry C, 2017, 121(21), 11047. 49 Zhao Y, Zhao J. Applied Surface Science, 2017, 412, 591. 50 Wang D S, Li F, Lian R Q, et al. ACS Nano, 2019, 13(10), 11078. 51 Lin H, Yang D D, Lou N, et al. Ceramics International, 2019, 45(2), 1588. 52 Zhang Q, Zhang X F, Xiao Y H, et al. ACS Omega, 2020, 5(45), 29272. 53 Li H, Zhu G, Zhang J W, et al. Materials Reports, 2022, 36(9), 17 (in Chinese). 李辉, 朱刚, 张建卫, 等. 材料导报, 2022, 36(9), 17. 54 Liu X B A, Shao X F, Li F, et al. Applied Surface Science, 2018, 455, 522. 55 He Y, Zhao Y, Zhang Y, et al. Energy Storage Materials, 2022, 47, 434. 56 Liang L, Niu L, Wu T, et al. ACS Nano, 2022, 16(5), 7971 57 Li N, Cao W, Liu Y, et al. Colloids and Surfaces A, 2019, 573, 128. 58 Kang H L, Han L S, Chen S L, et al. Polymers, 2022, 14(19), 4094 59 Chen Z Y, Asif M, Wang R C, et al. Chemical Record, 2022, 22(3), 261. 60 Li N, Xie Y, Peng S, et al. Journal of Energy Chemistry, 2020, 42, 116. 61 Zhang B, Luo C, Zhou G M, et al. Advanced Functional Materials, 2021, 31(26), 793. 62 Chen Z, Yang X B, Qiao X, et al. Journal of Physical Chemistry Letters, 2020, 11(3), 885. 63 Zhao W L, Lei Y J, Zhu Y P, et al. Nano Energy, 2021, 86, 106120. 64 Xiao Z, Yang Z, Li Z, et al. ACS Nano, 2019, 13(3), 3404. 65 Xiong D, Huang S, Fang D, et al. Small, 2021, 17(34), 7442. 66 Zhong X, Wang D, Sheng J, et al. Nano Letters, 2022, 22(3), 1207. 67 Wang D S, Li F, Lian R Q, et al. ACS Nano, 2019, 13(10), 11078. 68 Bao W, Liu L, Wang C, et al. Advanced Energy Materials, 2018, 8(13), 2485. 69 Jiang G, Zheng N, Chen X, et al. Chemical Engineering Journal, 2019, 373, 1309. 70 Zhang D, Wang S, Hu R, et al. Advanced Functional Materials, 2020, 30(30), 2471. 71 Deng R Y, Wang M, Yu H Y, et al. Energy & Environmental Materials, 2022, 5(3), 777. 72 Wang H, Wang L, Zhang H, et al. Chemical Engineering Journal, 2022, 431, 134179. 73 Wei C, Tian M, Wang M, et al. ACS Nano, 2020, 14(11), 16073. 74 Gao X T, Xie Y, Zhu X D, et al. Small, 2018, 14(41), 2443. 75 Zhang H, Yang L, Zhang P, et al. Advanced Materials, 2021, 33(21), 8447. 76 Xue L X, Li Y Y, Hu A J, et al. Small Structures, 2022, 3(3), 70. 77 Qiu S Y, Wang C, Jiang Z X, et al. Nanoscale, 2020, 12(32), 16678. 78 Jiao L, Zhang C, Geng C, et al. Advanced Energy Materials, 2019, 9(19), 219. 79 Wang Z, Yu K, Feng Y, et al. Applied Materials & Interfaces, 2019, 11(47), 44282. 80 Wang Z, Yu K, Gong S, et al. Nanoscale, 2020, 12(36), 18950. 81 Song C, Zhang W, Jin Q, et al. Journal of Power Sources, 2022, 520, 230902. |
|
|
|