POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Status of Organic Electron Transport Materials in Inverted Perovskite Solar Cells |
WANG Yaowu, WANG Binbin*
|
School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China |
|
|
Abstract Due to their simple manufacturing processes, low-temperature film-forming technology, negligible hysteresis, and suitability for preparation of multi-stack devices with conventional solar cells, inverted perovskite solar cells (PSCs) have been extensively researched. In the past se-veral years, the power conversion efficiency of inverted PSCs has increased from 3.9% to 25.37%. As a major component of PSCs, the electron transport layer (ETL) plays a critical role in extracting and transporting carriers, blocking holes, modifying energy levels, and preventing charge recombination. Because of their ease of synthesis and purification, high electron mobility, good solubility, and excellent chemical/thermal stability, organic materials such as fullerene and its derivatives, perylene diimide, and naphthalimide have been most commonly used in the ETLs of inverted PSCs. This review mainly introduces the research status of organic ETLs, modification methods for improving device performance by ETL doping, and interface modification in inverted PSCs, thus providing basic theoretical guidelines for developing new organic ETLs.
|
Published: 25 May 2024
Online: 2024-05-28
|
|
Fund:National Natural Science Foundation of China (42002164, U1804156), Natural Science Foundation of Henan Province (202300410171), Henan Province Science and Technology Research Program (222102240080), Henan Polytechnic University Young Backbone Teachers Funding Program (2022XQG-13). |
|
|
1 Yang Y, Luo Y, Ma S P, et al. Progress in Chemistry, 2021(0-2), 281(in Chinese). 杨英, 罗媛, 马书鹏, 等, 化学进展, 2021(0-2), 281 2 Hua Z H, Wu B, Wang C R, et al. Act Materiae Compositae Sinca, 2022, 39(0-5), 1870(in Chinese) . 华紫辉, 吴波, 王春儒, 等. 复合材料学报, 2022, 39(5), 1870. 3 Lian J R, Lu B, Niu F F, et al. Small Methods, 2018, 2(10), 1800082. 4 Zhang Y H, Li Y, et al. Rare Metals, 2021, 40(11), 2993. 5 Yang Y, Luo Y, Guo X Y, et al. Progress in Chemistry, 2021, 33(2), 281. 6 Chen R, Wang W, Bu T, et al. Acta Physico-Chimica Sinica, 2019, 35(4), 401. 7 Zhu L H, Shang X N, Lei K X, et al. Chinese Journal of Luminescence, 2019(5), 481, (in chinese) 朱立华, 商雪妮, 雷凯翔, 等. 发光学报, 2019 (5), 481. 8 Said A A, Xie J, Zhang Q C, et al. Nano·Micro Small, 2019, 15(27), 1900854. 9 Mombeshora E T, Muchuweni E, et al. Nanoscale Advances, 2022, 4(9), 2057. 10 Chen C L, Zhang S S, Wu S H, et al. RSC Advances, 2018, 7(57), 35819. 11 Lin X S, Cui D Y, Luo X H, et al. Energy & Environmental Science, 2020, 13(11), 3823. 12 Jeng J Y, Chiang Y F, Lee M H, et al. Advanced Materials, 2013, 25(27), 3727. 13 Min H, Lee D, Kim J, et al. Nature, 2021, 598(7881), 444. 14 Jiang Q, Tong J H, Xian Y M, et al. Nature, 2022, 611(7935), 278. 15 Jia Z Z, Zhong H, Shen J L, et al. Chemical Engineering Journal, 2022, 446(2), 136897. 16 Liu D Y, Wang Q, Elinki M, et al. ACS Omega, 2018, 3(6), 63339. 17 Lin H S, Jeon I, Xiang R, et al. ACS Applied Materials & Interfaces, 2018, 10(46), 39590. 18 Mehdi H, Selmi O, Mhamid A, et al. Journal of Materials Science-Materials in Electronices, 2022, 33(8), 5351. 19 Cho S, Pandey P, Park J, et al. ACS Applied Energy Materials, 2022, 5(1), 387. 20 Younes E M, Gurung A, Bahrami B, et al. Organic Electronics, 2022, 100, 6391. 21 Li R B, Zhen J M, Wan Y Y, et al. Journal of Materials Chemistry A, 2020, 8(7), 3872. 22 Zhou W R, Jia L B, Chen M Q, et al. Advanced Functional Materials, 2022, 32(34), 2201374. 23 Li D Y, Kong W G, Gao F L, et al. ACS Applied Materials & Interfaces, 2020, 12(17), 20103. 24 Chiang S E, Lin P C, Wu J R, et al. Nanotechnology, 2022, 34(1), 015401. 25 Lakhdar N, Hima A. Optical Materials, 2020, 99, 109517. 26 Zhong Y, Hufnagel M, Li C, et al. Advanced Functional Materials, 2020, 30(23), 1908920. 27 Karuppuswamy P, Hanmandlu C, Boopathi K M, et al. Solar Energy Materials and Solar Cells, 2017, 169, 78. 28 Zheng M M, Miao Y W, Syed A A, et al. Journal of Energy Chemistry, 2021, 56, 374. 29 Perez G S, Dasgupat S, Robertson N, et al. Journal of Materials Chemistry A, 2022, 10(20), 11046. 30 Yum J H, Moon S J, Yao L, et al. ACS Applied Energy Materials, 2019, 2(9), 6616. 31 Yum J H, Moon S J, Yao L, et al. ACS Applied Energy Materials, 2019, 2(9), 6616. 32 Wang H X, Zhang M M, Cheng M, et al. Chemical Engineering Journal, 2022, 438, 135410. 33 Chen S S, Dai X Z, Xu S, et al. Science, 2021, 373(6557), 902. 34 Wu T H, Qin Z Z, Wang Y B, et al. Nano-Micro Letters, 2021, 13, 1. 35 Ge C W, Wu W T, Hu L, et al. Organic Electronics, 2018, 61, 113. 36 Shaikh D B, Said A A, Bhosale R S, et al. Asian Journal of Organic Chemistry, 2018, 7(11), 2294. 37 Zhao D B, Zhu Z L, Kuo M Y, et al. Angeandte Chemie-international Edition, 2016, 55(31), 8999. 38 Zhao D, Zhu Z, Kuo M Y, et al. Angewandte Chemie, 2016, 128(31), 9145. 39 Elnaggar M M, Frolova L A, Gordeeva A M, et al. Synthetic Metals, 2022, 286, 117028. 40 Li F Z, Deng X, Qi F, et al. Journal of the American Chemical Society, 2021, 142(47), 20134. 41 Mehdi H, Mhamdi A, Bouazizi A, et al. Physica E: Low-Dimensional Systems & Nanostructuers, 2020, 119, 114000. 42 Kim J Y, Lee J W, Shin H, et al. Chemical Reviews, 2020, 120(15), 7867. 43 Zhang Q C, Shaikh D B, Said A A, et al. ACS Applied Materials & Interfaces, 2019, 11(47), 44487. 44 Said A A, Wagalgave S M, Xie J, et al. Journal of Solid State Chemistry, 2019, 270, 51. 45 Liu W B, Shaikh D B, Zhang Q C, et al. Chemistry-An Asian Journal, 2020, 15(1), 112. 46 Wang N, Zhao K X, Ding T, et al. Advanced Energy Materials, 2017, 7(18), 1700522. 47 Zhu X M, Sun J, Yuan S, et al. New Journal of Chemistry, 2019, 43(18), 7130. 48 Degani M, An Q Z, Cho C, et al. Science Advances, 2021, 7(49), eabj7930. 49 Chin Y C, Daboczi M, Henderson C, et al. ACS Energy Letters, 2022, 7(2), 560. 50 Liu D Y, Wang Q, Chen P, et al. ACS Omega, 2018, 3(6), 6339. 51 Li X, Fu S, Zhang W, et al. Science Advance, 2020, 6(51), eabd1508. 52 Wang J T, Li J H, Zhou Y C, et al. Journal of the American Chemical Society, 2021, 143(20), 7759. 53 Yang J B, Cao Q, Wang T, et al. Energy & Environmental Science, 2022, 15(5), 2154. 54 Li X D, Zhang W X, Guo X M, et al. Science, 2022, 375(6579), 434. 55 Jia J C, Wu F, Zhu L N, et al. ACS Applied Materials & Interfaces, 2021, 13(28), 33328. 56 Li Z, Li B, Wu X, et al. Science, 2022, 376(6591), 416. 57 Mehdi H, Selmi O, Mhamdi A, et al. Journal of Materials Science-Materials in Electronics, 2022, 33(8), 5351. 58 Huang B O, Xia X F, Wang X F, et al. Solar Energy Materials and Solar Cells, 2022, 240, 111682. 59 Jiang Y Y, Li J, Xiong S X, et al. Journal of Materials Chemistry A, 2017, 5(33), 17632. 60 Yang D, Zhang X, Wang K, et al. Nano letters, 2019, 19(5), 3313. 61 Cheng Z D, Gao C, Song J N, et al. ACS Applied Materials & Interfaces, 2021, 13(34), 40778. 62 Zhu X M, Sun J, Yan S, et al. New Journal of Chemistry, 2019, 43(18), 7130. 63 Xu R G, Wang Z F, Xu W Z, et al. RRL Solar, 2021, 5(7), 2100236. 64 Patel M S, Chaudhary D K. Journal of Materials Science-Materials in Electronics, 2020, 31(14), 11150. 65 Lee S H, Hong S, An S, et al. Electronic Materials Letters, 2020, 16(6), 588. 66 Li X, Sheng W P, Duan X P, et al. ACS Applied Materials & Interfaces, 2022, 14(30), 34161. |
|
|
|