METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on the Effect of Magnetic Field on the Service Performance of Alloy Material |
ZHOU Anyang1, GUO Weiling1, HUANG Yanfei1, WANG Zhiyuan2, WANG Haidou1,3,*, XING Zhiguo1,*
|
1 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China 2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 3 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China |
|
|
Abstract As a number of major strategic projects in China are being implemented in fields such as ocean engineering and aerospace engineering, it is particularly important to ensure the service performance of alloys, used as key building materials in these strategic projects, can withstand increasingly harsh conditions. In particular, these engineering projects require alloys with improved anti-corrosion performance in complex environments such as in ocean-atmosphere interactions, the deep sea, and cold plateaus, long lifetimes and reliable service in high-temperature and heavy-load environments, friction reduction in aerospace and geological drilling environments, and improved mechanical properties in high-speed and high-pressure environments. This demand has led to an increase in popularity for research on developing highly-reliable alloy materials demonstrating high performance in complex environments. Processing alloys under magnetic fields differs from traditional alloy-processing methods, providing a non-contact method capable of improving the performance of alloy materials with increased cleanliness and reduced energy consumption. These properties are extremely important for the preparation and processing of alloy materials. Firstly, this paper summarizes the typical mechanisms and research progress of different magnetic fields in solid and molten alloys. This paper also analyses the crystal structure of alloys during solidification when under magnetic fields, and the effect of magnetic fields on the microstructure of solid alloys, including magnetic domains, phase transitions and dislocation. Secondly, the influence of different magnetic field types, intensities, and directions on alloy mechanics, friction, fatigue performance, and corrosion resistance is investigated. Finally, potential future developments for magnetic-field-treated alloys are discussed, and solutions to some of the urgent problems affecting major strategic works are proposed.
|
Published: 25 May 2024
Online: 2024-05-28
|
|
Fund:Key Projects of the National Natural Science Foundation of China (52275227,52130509), Key Basic Research Projects of the Basic Enhancement Program (2019-JCJQ-JJ-034, 2019-JCJQ-ZD-302). |
|
|
1 Li G R, Cheng J F, Wang H M, et al. Rare Metal Materials and Engineering, 2019, 10. 2 Li P, Zhang Y, Wang W Y, et al. Materials Science and Engineering A, 2021, 824, 141815. 3 Ju J, Hu L, Bao C W, et al. Materials, 2021, 14(10), 2514. 4 Lin C, Wu S S, Lü S L, et al. Intermetallics, 2013, 32, 176. 5 Rosa R, Colombini E, Veronesi P, et al. Journal of Materials Enginee-ring and Performance, 2012, 21(5), 725. 6 Franco V, Blázquez J S, Ingale B, et al. Annual Review of Materials Research, 2012, 42(1), 305. 7 Liu J, Gottschall T, Skokov K P, et al. Nature Materials, 2012, 11(7), 620. 8 He S Y, Li C J, Guo R, et al. Journal of Alloys and Compounds, 2019, 800, 41. 9 Zhou Y H, Huang T. Foundry, 1987(1), 32(in Chinese). 周尧和, 黄慆. 铸造, 1987(1), 32. 10 Naiya A K. Ceramics International, 2021, 47(20), 29000. 11 Galustashvili M V, Driaev D G, Kvatchadze V G. JETP Letters, 2019, 110(12), 785. 12 Zhang X, Cai Z P. JETP Letters, 2018, 108(1), 23. 13 Alshits V I, Darinskaya E V, Koldaeva M V, et al. Journal of Applied Physics, 2009, 105(6), 063520. 14 Osip’yan Y A, Nikolaev R K, Shmurak S Z, et al. Physics of the Solid State, 1999, 41(11), 1926. 15 Golovin Y I, Morgunov R B. Physics of the Solid State, 2001, 43(5), 859. 16 Yang Q, Jiang B, Song B, et al. Journal of Magnesium and Alloys, 2022, 10(2), 411. 17 Liu Z L, Hu H Y, Fan T Y. Journal of Beijing University of Technology, 2007(2), 113(in Chinese). 刘兆龙, 胡海云, 范天佑. 北京理工大学学报, 2007(2), 113. 18 Mohamad R, Chen J, Ruterana P. Computational Materials Science, 2020, 172, 109384. 19 Gavriljuk V G, Shyvaniuk V N, Teus S M. Journal of Alloys and Compounds, 2021, 886, 161260. 20 Cheng J F, Li G R, Wang H M, et al. Journal of Materials Engineering and Performance, 2018, 27(3), 1083. 21 Li G R, Cheng J F, Wang H M, et al. Materials Research Express, 2016, 3(10), 106507. 22 Li G R, Xue F, Wang H M, et al. Chinese Physics B, 2016, 25(10), 106201. 23 Li G R, Wang H M, Yuan X T, et al. Materials Letters, 2013, 99, 50. 24 Xu Q D, Li K J, Cai Z P, et al. Acta Metallurgica Sinica, 2019, 55(4), 489 (in Chinese). 许擎栋, 李克俭, 蔡志鹏, 等. 金属学报, 2019, 55(4), 489. 25 Billington D, Okazaki H, Toyoki K, et al. Acta Materialia, 2021, 205, 116517. 26 Armstrong A, Nilsén F, Rameš M, et al. Shape Memory and Superelasti-city, 2020, 6(1), 97. 27 Clark A E, Restorff J B, Wun-fogle M, et al. IEEE Transactions on Magnetics, 2000, 36(5), 3238. 28 Singh P K, Panda S K, Rath C. Sensors and Actuators A: Physical, 2021, 331, 112963. 29 Sun M, Huang W, Li L, et al. Journal of Alloys and Compounds, 2021, 856, 158178. 30 Diopl V B, Amara M, Isnard O. Applied Physics Letters, 2021, 118(26), 262409. 31 Chandrasekhar S. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1952, 43(340), 501. 32 Vakhrushev A, Kharicha A, Wu M, et al. IOP Conference Series: Materials Science and Engineering, 2020, 861(1), 012015. 33 Matthiesen D H, Wargo M J, Motakef S, et al. Journal of Crystal Growth, 1987, 85(3), 557. 34 Virbulis J, Wetzel T, Muiznieks A, et al. Journal of Crystal Growth, 2001, 230(1-2), 92. 35 Mikelson A E, Karklin Y K. Journal of Crystal Growth, 1981, 52, 524. 36 Polash M H, Vashaee D. Physica status solidi (RRL)-Rapid Research Letters, 2021, 15(10), 2100231. 37 Zhong H. On the mechanism of α-Al dendritic growth in the presence of high static magnetic field. Ph. D. Thesis, Shanghai University, China, 2017(in Chinese). 钟华. 强静磁场对α-Al枝晶生长过程调控机理的研究. 博士学位论文, 上海大学, 2017. 38 Walker J S, Cröll A, Szofran F R. Journal of Crystal Growth, 2001, 223(1-2), 73. 39 Li X, Fautrelle Y, Ren Z. Acta Materialia, 2007, 55(4), 1377. 40 Ren Z M. Materials China, 2010, 29(6), 40 (in Chinese). 任忠鸣. 中国材料进展, 2010, 29(6), 40. 41 Dold P, Szofran F R, Benz K W. Journal of Crystal Growth, 2006, 291(1), 1. 42 Li Q, Xia Z, Guo Y, et al. Metallurgical and Materials Transactions B, 2021, 52(3), 1495. 43 Polash M H, Vashaee D. Physical Review Applied, 2021, 15(1), 014011. 44 Chandrasheker J, Raju V S. Materials Today: Proceedings, 2021, 37, 1834. 45 Zhang Q. Technique and theory of semi-continuous casting of aluminum alloys under low-frequency electromagnetic field. Ph. D. Thesis, Nort-heastern University, China, 2003(in Chinese). 张勤. 低频电磁半连续铸造铝合金工艺及理论研究. 博士学位论文, 东北大学, 2003. 46 Natarajan T T, El-Kaddah N. Applied Mathematical Modelling, 2004, 28(1), 47. 47 Liu T, Wang Z Z. Southern Metals, 2021(1), 1 (in Chinese). 刘书涛, 王振哲. 南方金属, 2021(1), 1. 48 Luo L, Luo L, Su Y, et al. Journal of Materials Science & Technology, 2021, 74, 246. 49 Asai S, Sassa K, Tahashi M. Science and Technology of Advanced Materials, 2003, 4(5), 455. 50 Veligatla M, Titsch C, Drossel W G, et al. Acta Materialia, 2020, 186, 389. 51 Rivoirard S. Journal of Metals, 2013, 65(7), 901. 52 Ferreira P J, Liu H B, Sande J B V. Journal of Materials Research, 1999, 14(7), 2751. 53 Lees M R, Bourgault D, de Rango P, et al. Philosophical Magazine B, 1992, 65(6), 1395. 54 Xu Y, Casari D, Mathiesen R H, et al. Acta Materialia, 2018, 149, 312. 55 Hou H, Li Y, Xu X, et al. Materials Science and Technology, 2018, 34(4), 402. 56 Fu J W, Yang Y S. Journal of Materials Research, 2011, 26(14), 1688. 57 Viardin A, Zollinger J, Sturz L, et al. Computational Materials Science, 2020, 172, 109358. 58 He S, Shevchenko N, Eckert S, et al. Materials Science and Enginee-ring, 2020, 9. 59 Min Z X, Shen J, Feng Z R, et al. Journal of Crystal Growth, 2011, 320(1), 41. 60 Li L, Suo Y, Zhang R, et al. Journal of Applied Physics, 2019, 125(24), 245108. 61 Li G M, Liu Y, Zou X Z, et al. Journal of Functional Materials, 2013, 44(15), 2197 (in Chinese). 李贵茂, 柳艳, 邹兴政, 等. 功能材料, 2013, 44(15), 2197. 62 Shen Z, Ren L, Lin Z Z, et al. Chinese Journal of Nonferrous Metals, 2021, 31(5), 1134 (in Chinese). 沈喆, 任朗, 林中泽, 等. 中国有色金属学报, 2021, 31(5), 1134. 63 Luo L. Transactions of Nonferrous Metals Society of China, 2021, 13. 64 Li X, Fautrelle Y, Zaidat K, et al. Journal of Crystal Growth, 2010, 312(2), 267. 65 Du X D, Wang F, Wang Z, et al. Acta Metallurgica Sinica (English Letters), 2020, 33(9), 1259. 66 Wu Y, Tian Z, Liu F, et al. Materials Letters, 2021, 303, 130515. 67 Zhang L, Hu P H, Zhou Q, et al. Materials Letters, 2017, 193, 224. 68 Xu J, Hong B, Peng X, et al. Chemical Physics Letters, 2021, 767, 138368. 69 Hubert A. Physica Status Solidi (b), 1970, 38(2), 699. 70 Smith N. IEEE Transactions on Magnetics, 1991, 27(2), 729. 71 Xie S H, Liu X Y, Zhou Y C, et al. Journal of Applied Physics, 2011, 109(6), 063911. 72 Liu T, Gao P, Dong M, et al. AIP Advances, 2016, 6(5), 056216. 73 Zhang Y, Fang C, Huang Y, et al. Journal of Magnetism and Magnetic Materials, 2021, 540, 168327. 74 Ren J, Pan Q, Yang S, et al. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(3-4), 1143. 75 Shao Q, Kang J J, Xing Z G, et al. Journal of Magnetism and Magnetic Materials, 2019, 476, 218. 76 Liu Y, Wang Q, Kazuhiko I, et al. Journal of Magnetism and Magnetic Materials, 2014, 357, 18. 77 Sechin D A, Nikolaeva E P, Pyatakov A P, et al. Solid State Phenomena, 2015, 233-234, 443. 78 Chen P, Liu T, Kong F, et al. Journal of Materials Science & Technology, 2018, 34(5), 793. 79 Fukuda T, Maeda H, Yasui M, et al. Scripta Materialia, 2009, 60(4), 261. 80 Jeong S, Inoue K, Inoue S, et al. Materials Science and Engineering A, 2003, 359(1-2), 253. 81 Wang F, Qian D, Hua L, et al. Materials Science and Engineering A, 2020, 771, 138623. 82 Schastlivtsev V M, Kaletina Y V, Fokina E A, et al. Metal Science and Heat Treatment, 2016, 58(5-6), 247. 83 Dong B Q, Hou T P, Wu K M, et al. Materials Letters, 2019, 240, 66. 84 Nawaz B, Long X, Yang Z, et al. Materials Science and Engineering A, 2019, 759, 11. 85 Ohtsuka H. Science and Technology of Advanced Materials, 2008, 9(1), 013004. 86 Li J, Liu W. Journal of Magnetism and Magnetic Materials, 2014, 362, 159. 87 Jaramillo R A, Babu S S, Ludtka G M, et al. Scripta Materialia, 2005, 52(6), 4616. 88 Enomoto M, Zhang G H, Wu K M. Solid State Phenomena, 2011, 172-174, 362. 89 Song J Y, Zhao X, Zhang Y D, et al. Steel Research International, 2011, 82(7), 836. 90 Wang L, Liu J, Yang Y, et al. The Chinese Journal of Nonferrous Me-tals, 2018, 28(5), 931 (in Chinese). 王琳, 刘剑, 杨屹, 等. 中国有色金属学报, 2018, 28(5), 931. 91 Sun Z H, Xing S Q, He S, et al. Rare Metal Materials and Engineering, 2022, 51(1), 273 (in Chinese). 孙中豪, 邢淑清, 贺帅, 等. 稀有金属材料与工程, 2022, 51(1), 273. 92 Yuan Z, Li C, Ma C, et al. Journal of Alloys and Compounds, 2015, 631, 86. 93 Wang H M, Peng C X, Li G R, et al. Rare Metal Materials and Engineering, 2017, 46(5), 1425 (in Chinese). 王宏明, 彭琮翔, 李桂荣, 等. 稀有金属材料与工程, 2017, 46(5), 1425. 94 Sheikh-Ali A D, Molodov D A, Garmestani H. Scripta Materialia, 2002, 46(12), 857. 95 Li H, Wang Y, Chen Q, et al. Chinese Science Bulletin, 1997, 42(24), 2064. 96 Konovalov S V, Zagulyaev D V, Yaropolova N G, et al. Russian Journal of Non-Ferrous Metals, 2015, 56(4), 441. 97 Rajasekhara S, Ferreira P J. Scripta Materialia, 2005, 53(7), 817. 98 Alshits V I, Darinskaya E V, Koldaeva M V, et al. Polish-Japanese Academy of Information Technology, 2017, 60(3), 125. 99 Luo J, Luo H, Zhao T, et al. Journal of Materials Science & Technology, 2021, 93, 128. 100 Hou M, Li K, Li X, et al. Crystals, 2020, 10(2), 115. 101 Wu G H, Hou T P, Wu K M, et al. Journal of Magnetism and Magnetic Materials, 2019, 479, 43. 102 Luan X S, Liang Z Q, Zhao W X, et al. Acta Metallurgica Sinica (English Letters), 2021, 57(10), 1272. 103 Li Q C, Li L J, Chang G W, et al. Journal of Iron and Steel Research International, 2015, 22(12), 1131. 104 Veligatla M, Garcia-cervera C J, Müllner P. Acta Materialia, 2020, 193, 221. 105 Fei H L, Wu H Y, Yang X D, et al. Journal of Manufacturing Processes, 2021, 69, 21. 106 Xiang Z L, Zhang L, Xin Y, et al. Materials & Design, 2021, 199, 109383. 107 Wang Y, Xing Z G, Huang Y F, et al. Journal of Magnetism and Magnetic Materials, 2021, 538, 168248. 108 Zou J, Lu D P, Liu K M, et al. Materials Transactions, 2015, 56(12), 2058. 109 Vdovin K N, Dubsky G A, Deev V B, et al. Russian Journal of Non-Ferrous Metals, 2019, 60(3), 247. 110 Yan M, Wang C, Luo T J, et al. Acta Metallurgica Sinica (English Letters), 2021, 34(1), 45. 111 Cai Z P, Huang X Q. Materials Science and Engineering A, 2011, 528(19-20), 6287. 112 Cai Z P, Zhao H Y, Lin J, et al. Materials Science and Engineering A, 2007, 458(1-2), 262. 113 Ma L P, Zhao W X, Liang Z Q, et al. Materials Science and Enginee-ring A, 2014, 609, 16. 114 Shao Q, Wang G, Wang H D, et al. Materials Science and Engineering A, 2021, 799, 140143. 115 Luo C, Li Z L, Cao H Z, et al. China Mechanical Engineering, 2016, 27(11), 1535 (in Chinese). 罗丞, 李正龙, 曹洪志, 等. 中国机械工程, 2016, 27(11), 1535. 116 Zhang X, Zhao Q, Cai Z P, et al. Metals, 2020, 10(1), 141. 117 Akram S, Babutskyi A, Chrysanthou A, et al. Wear, 2021, 484(5), 203. 118 Xie Y L, Sun C, Zhang Y Z, et al. Tribology Transactions, 2019, 62(5), 868. 119 Ma L P, Liang Z Q, Wang X B, et al. Acta Metallurgica Sinica, 2015, 51(3), 307. 120 Hou M D, Li K J, Li X G, et al. Crystals, 2020, 10(2), 115. 121 Chin K J, Zaidi H, Mathia T. Wear, 2005, 259(1-6), 477. 122 Zaïdi H, Amirat M, Frêne J, et al. Wear, 2007, 263(7-12), 1518. 123 Lida Y, Stolarski T. Wear, 2009, 266(11-12), 1098. 124 Sawaguchi T, Nikulin I, Ogawa K, et al. Acta Materialia, 2021, 220, 117267. 125 Bose M S C. Physica Status Solidi (a), 1984, 86(2), 649. 126 Pyttel B, SchwerdT D, Berger C. International Journal of Fatigue, 2011, 33(1), 49. 127 Qian C K, Li K J, Rui S S, et al. Journal of Alloys and Compounds, 2021, 881, 160471. 128 Zhang Y F, Fang C Y, Huang Y F, et al. Journal of Magnetism and Magnetic Materials, 2021, 540, 168327. 129 Lü B T, Qiao S R, Sun X Y. Scripta Materialia, 1999, 40(7), 767. 130 Çelik A, Fatih Y A, Alsaran A, et al. Materials & Design, 2005, 26(8), 700. 131 Miller P C. Tooling & Production, 1990, 55(12), 100. 132 Zhang L, Hu P H, Zhou Q, et al. Materials Letters, 2017, 193, 224. 133 Chouchane S, Levesque A, Zabinski P, et al. Journal of Alloys and Compounds, 2010, 506(2), 575. 134 Jiang C, Wang H, Chen X, et al. Electrochimica Acta, 2013, 112, 535. 135 Zhang X, Wang Z, Zhou Z, et al. Journal of Alloys and Compounds, 2017, 698, 241. 136 He X H. Effect of magnetic field solidification treatment on microstructure and electrochemical properties of low antimony rare earth lead alloy. Master’s Thesis, Central South University, China, 2007 (in Chinese). 贺小红. 磁场凝固处理对低锑稀土铅合金的微观结构和电化学性能的影响. 硕士学位论文, 中南大学, 2007. 137 Huang L P, Zhang X, Xiong Y M, et al. Journal of Chinese Society for Corrosion and Protection, 2022, 42(5), 833 (in Chinese). 黄连鹏, 张欣, 熊伊铭, 等. 中国腐蚀与防护学报, 2022, 42(5), 833. 138 Lu Z, Shoji T, Yang W. Corrosion Science, 2010, 52(8), 2680. 139 Sueptitz R, Koza J, Uhlemann M, et al. Electrochimica Acta, 2009, 54(8), 2229. 140 Ghabashy M A. Anti-Corrosion Methods and Materials, 1988, 35(1), 12. 141 Tian G, Wei A J, Huo F Y, et al. Pipeline Technique and Equipment, 2010(1), 50 (in Chinese). 田光, 魏爱军, 霍富永, 等. 管道技术与设备, 2010(1), 50. 142 Zheng B, Li K, Liu H, et al. Industrial & Engineering Chemistry Research, 2014, 53(1), 48. 143 Li K J, Zheng B J, Chen B, et al. Journal of Chinese Society for Corrosion and Protection, 2013, 33(6), 463 (in Chinese). 李克娟, 郑碧娟, 陈碧, 等. 中国腐蚀与防护学报, 2013, 33(6), 463. |
[1] |
SU Yue, YAN Nan, BAI Xiaoyu, FU Lin, ZHANG Qijun, LIANG Bin, WANG Baodong, WANG Libin, ZHANG Yingjie, ZHANG Anqi. Research Progress and Application on Engineering Characteristics of Ready-mixed Fluid Solidified Soil[J]. Materials Reports, 2024, 38(9): 23070212-7. |
|
|
|
|