METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Preparation and Performance of Fe-Ni-Cu-Sn Metal Bond Diamond Tool for Grinding Unfired Sliding Plate |
HU Danming1, DUAN Feng1,*, DING Donghai1, LI Jie1, YIN Yuhang1,2, PENG Kai2
|
1 School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China 2 Monte-Bianco Diamond Tool Applications Co., Ltd., Foshan 528313, Guangdong, China |
|
|
Abstract Al2O3-C unfired slide plate is widely used as the functional refractory materials of the continuous casting, and the metal binding diamond tools play a key role in the grinding of the slide plate. In this work, Fe-Ni-Cu-Sn metal matrix and diamond tools were prepared by hot pressing sintering. Firstly, the effects of sintering temperature, holding time and sintering pressure on the mechanical properties of diamond tool matrix were studied to obtain optimal parameters of sintering process needed by the subsequent preparation of diamond tools. Secondly, the effects of different diamond abrasives on the mechanical properties and performance for grinding unfired slide plate processing tools were studied. The optimal parameters of diamond abrasives in diamond tools for grinding unfired slide plate was obtained by studying the relationship between the concentration, particle size, grade of diamond and the grinding efficiency, life and sharpness of the processing tools. The bonding state of the matrix of the diamond tool and the diamond abrasive and the wear of the diamond were analyzed by SEM microstructure. The results show that the optimum sintering process parameters of diamond tool matrix are sintering temperature, holding time and sintering pressure of 785 ℃, 170 MPa and 240 s, respectively. The optimal selection of diamond abrasive in diamond tools is that the diamond concentration is 25%, the particle size is 45/50, and the grade is SMD35.
|
Published: 25 May 2024
Online: 2024-05-28
|
|
|
|
1 Li S X, Duan F, Ren X H, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(9), 2847 (in Chinese). 李姝欣, 段锋, 任学华, 等. 硅酸盐通报, 2019, 38(9), 2847. 2 Jin C L, Sun J L. Steelmaking, 1999, 15(4), 53 (in Chinese). 金丛进, 孙加林. 炼钢, 1999, 15(4), 53. 3 Li H X. Refractory handbook, Metallurgical Industry Press, China, 2007(in Chinese). 李红霞. 耐火材料手册. 冶金工业出版社, 2007. 4 Li H X. Journal of Inorganic Materials, 2018, 33(2), 198 (in Chinese). 李红霞. 无机材料学报, 2018, 33(2), 198. 5 Wu Y P, Yan Q Z. Diamond & Abrasives Engineering, 2019, 39(2), 37 (in Chinese). 吴燕平, 燕青芝. 金刚石与磨料磨具工程, 2019, 39(2), 37. 6 Zhao X, Duan L. Metals-Open Access Metallurgy Journal, 2018, 8(5), 307. 7 Sun Y C, Song Y Q, Qu D G. Diamond & Abrasives Engineering, 2003(2), 41 (in Chinese). 孙毓超, 宋月清, 屈定国. 金刚石与磨料磨具工程, 2003(2), 41. 8 Sun Y C, Song Y Q. Theory and practice of diamond tool manufacturing, Zhengzhou University Press, China, 2005 (in Chinese). 孙毓超, 宋月清. 金刚石工具制造理论与实践, 郑州大学出版社, 2005. 9 Wang K J, Liu X, Li H, et al. Science Technology and Engineering, 2016, 16(29), 212 (in Chinese). 王克军, 刘璇, 李辉, 等. 科学技术与工程, 2016, 16(29), 212. 10 Wei Y X, Duan F, Yin Y H, et al. Materials Reports, 2021, 35(14), 14166 (in Chinese). 魏运先, 段锋, 尹育航, 等. 材料导报, 2021, 35(14), 14166. 11 Fan H W, Yuan J L, Lyu B H, et al. Aviation Precision Manufacturing Technology, 2010, 46(4), 38 (in Chinese). 范红伟, 袁巨龙, 吕冰海, 等. 航空精密制造技术, 2010, 46(4), 38. 12 Wang D. Research on key techniques of micromachining of micro-structure on hard and brittle non-metallic materials. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2011 (in Chinese). 王丹. 硬脆非金属材料微结构微细加工关键技术研究. 博士学位论文, 上海交通大学, 2011. 13 Artini C, Muolo M L, Passerone A. Journal of Materials Science, 2011, 47(7), 3252. 14 Hsieh Y Z, Lin S T. Materials Chemistry and Physics, 2001, 72(2), 121. 15 Nitkiewicz Z, Wierzy M. Journal of Materials Processing Technology, 2006, 175(1-3), 306. 16 Wang L, Guo S, Gao J, et al. Journal of Alloys and Compounds, 2017, 727, 94. 17 Reis L, Amaral P M, Li B, et al. Theoretical & Applied Fracture Mechanics, 2008, 49(2), 226. 18 Wensheng L I. Rare Metals, 2012, 31(1), 7. 19 Hsieh Y Z, Lin S T. Materials Chemistry and Physics, 2001, 72(2), 121. 20 Zhao X, Li J, Duan L, et al. International Journal of Refractory Metals & Hard Materials, 2019, 79, 115. 21 Li G P, Luo B C. Development & Innovation of Machinery & Electrical Products, 2011, 24(1), 184 (in Chinese). 李国平, 罗伯诚. 机电产品开发与创新, 2011, 24(1), 184. 22 Zhang S H, Liu Z H, Xiao Z Q. Powder Metallurgy Technology, 2006(2), 110 (in Chinese). 张绍和, 刘志环, 肖尊群. 粉末冶金技术, 2006(2), 110. 23 Tan Y L. Superhard Material Engineering, 2006, 18 (5), 30 (in Chinese). 谈耀麟. 超硬材料工程, 2006, 18(5), 30. 24 Zhen C G. Superhard Material Engineering, 2009, 21(5), 4 (in Chinese). 甄春刚. 超硬材料工程, 2009, 21(5), 4. 25 Hou J. Effect of hot-press sintering process parameters on properties of diamond composites. Master’s Thesis, Jiangsu University of Science and Technology, China, 2018 (in Chinese). 侯健. 热压烧结工艺参数对金刚石复合体性能的影响研究. 硕士学位论文, 江苏科技大学, 2018. 26 Shang J M. Development of new-type porous metal-bonded diamond grinding wheels. Master’s Thesis, Nanjing University of Aeronautics, China, 2007 (in Chinese). 商家铭. 新型多孔金属结合剂金刚石砂轮的研制. 硕士学位论文, 南京航空航天大学, 2007. 27 Zhao J, Chen E H, Chen F, et al. Diamond & Abrasives Engineering, 2016(1), 57 (in Chinese). 赵炯, 陈恩厚, 陈锋, 等. 金刚石与磨料磨具工程, 2016 (1), 57. 28 Xu X P. Materials & Manufacturing Processes, 2000, 15 (1), 123. 29 Li Z Y, Li Y M, He H, et al. Nonferrous Metals Science and Enginee-ring, 2016, 7(6), 77 (in Chinese). 李志远, 李益民, 何浩, 等. 有色金属科学与工程, 2016, 7(6), 77. |
|
|
|