METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Study on Martensitic Transformation and Mechanical Properties of SPS Sintered Ni-Mn-In Alloys |
KUANG Yafei1,2, LI Yongbin1,2, ZHANG Yan1,2, CHEN Fenghua1,2, SUN Zhigang1,2, HU Jifan1,2,*
|
1 College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 2 Key Laboratory of Magnetoelectric Functional Materials and Applications of Shanxi Province, Taiyuan 030024, China |
|
|
Abstract The Ni45Co5Mn37In13 alloy was prepared by spark plasma sintering technology. The heat treatment process and sintering process parameters were optimized to eliminate internal stresses that hinder the martensitic transformation as much as possible. The results show that the alloy in the powder state is favored to obtain a 6M martensitic structure after annealing at 773 K. The presence of the 6M martensitic structure facilitates the phase transformation, which is mainly attributed to the enhanced ordering and homogenization in the atomic structure. While the annealing time increases from 2 h to 25 h, there is no obvious change in the martensitic transformation behavior for the alloy in the powder state, which is attributed that annealing time has little effect on the atomic diffusion and the dislocation motion. As the sintering temperature increases from 873 K to 1 173 K, the compressive strength and ultimate strain of the sintered alloys raise to 1 564 MPa and 13.4%, respectively, which is attributed to the reduction of porosity, improvement of densification and strengthening of intergranular boundaries. In a word, by performing two relieved-stress annealing at low temperatures and one high-temperature sintering, the sintered Ni45Co5Mn37In13 alloy not only obtains excellent mechanical properties, but also has a sharp martensitic transformation behavior.
|
Published: 10 May 2024
Online: 2024-05-13
|
|
Fund:National Natural Science Foundation of China (52301248), the Foundational Research Project of Shanxi Province (202203021222201, 202203021212304), PhD Research Startup Foundation of Taiyuan University of Science & Technology (20222057), and PhD Research Startup Foundation of Shanxi Province (20232051). |
|
|
1 Cazorla C. Applied Physics Reviews, 2019, 6 (4), 041316. 2 Fähler S, Pecharsky V K. MRS Bulletin, 2018, 43 (4), 264. 3 Franco V, Blazquez J S, Ipus J J, et al. Progress in Materials Science, 2018, 93, 112. 4 Karaca H E, Karaman I, Basaran B, et al. Advanced Functional Mate-rials, 2009, 19 (7), 983. 5 Kosugi Y, Goto M, Tan Z, et al. Scientific Reports, 2021, 11 (1), 12682. 6 Li B, Kawakita Y, Ohira-Kawamura S, et al. Nature, 2019, 567, 506. 7 Liu J, Gottschall T, Skokov K P, et al. Nature Materials, 2012, 11 (7), 620. 8 Mañosa L, Planes A. Applied Physics Letters, 2020, 116 (5), 050501. 9 Wei L S, Zhang X X, Qian M F, et al. Materials and Design, 2016, 112, 339. 10 Wang D J, Yuan H, Qiang J M. Metals, 2017, 7 (6), 201. 11 Zhang L, Zhang Y Q, Jiang Y H, et al. Journal of Alloys and Compounds, 2015, 644, 513. 12 Tian X H, Sui J H, Zhang X, et al. Chinese Physics B, 2011, 20 (4), 047503. 13 Wang Z, Matsumoto M, Abe T, et al. Materials Transactions Jim, 1999, 40 (5), 389. 14 Tian X H, Sui J H, Zhang X, et al. Journal of Alloys and Compounds, 2011, 509 (10), 4081. 15 Ito K, Ito W, Umetsu R Y, et al. Scripta Materialia, 2009, 61 (5), 504. 16 Tian B, Ren D C, Tong Y X, et al. Materials Science Forum, 2015, 815, 222. 17 Liu D M, Nie Z H, Ren Y, et al. Metallurgical and Materials Transactions A, 2011, 42 (10), 3062. 18 Qian M F, Zhang X X, Jia Z G, et al. Materials and Design, 2018, 148, 115. 19 Ito K, Ito W, Umetsu R Y, et al. Materials Transactions, 2008, 49 (8), 1915. 20 Maziarz W, Wójcik A, Czaja P, et al. Journal of Magnetism and Magnetic Materials, 2016, 412, 123. 21 Tian B, Chen F, Tong Y X, et al. Journal of Alloys and Compounds, 2011, 509 (13), 4563. 22 Jin X, Marioni M, Bono D, et al. Journal of Applied Physics, 2002, 91 (10), 8222. 23 Ito W, Imano Y, Kainuma R, et al. Metallurgical & Materials Transactions A, 2007, 38 (4), 759. 24 Pérez-Sáez R B, Recarte V, Nó M L, et al. Advanced Engineering Materials, 2000, 2 (1-2), 49. 25 Li Z B. Crystallographic characterization and microstructure control of polycrystalline Ni-Mn-Ga ferromagnetic multi-functional alloys. Ph.D. Thesis, Northeastern University, China, 2013 (in Chinese). 李宗宾. 多晶Ni-Mn-Ga磁控功能合金的晶体学表征与微观组织调控. 博士学位论文, 东北大学, 2013. 26 Huang X M, Wang L D, Liu H X, et al. Intermetallics, 2019, 113, 106579. 27 Li Z Z, Li Z B, Li D, et al. Acta Materialia, 2020, 192, 52. 28 Guan Z Q, Bai J, Zhang Y, et al. Rare Metals, 2022, 41 (6), 1933. 29 Qu Y H, Cong D Y, Sun X M, et al. Acta Materialia, 2017, 134, 236. 30 Feng Y, Gao J Y, Zhou M M, et al. Journal of Magnetism and Magnetic Materials, 2022, 563, 169906. 31 Feng Y, Yuan X Y, Zhou M M, et al. Journal of Alloys and Compounds, 2023, 944, 169143. |
[1] |
WANG Zijian, SUN Shulei, XIAO Han, RAN Xudong, CHEN Qiang, HUANG Shuhai, ZHAO Yaobang, ZHOU Li, HUANG Yongxian. Research Status of Additive Friction Stir Deposition[J]. Materials Reports, 2024, 38(9): 22100039-16. |
|
|
|
|