INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Preparation of Magnetic Multi-walled Carbon Nanotubes as Catalyst for Degradation of Orange Ⅱ by Fenton-like Reaction |
MIAO Qingshan, YANG Jing, ZHANG Tiecheng, LI Wenpeng, SHAN Shaoyun, SU Hongying*
|
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China |
|
|
Abstract In order to enhance the catalyst efficiency of heterogeneous Fenton-like system, Fe3O4-modified multi-walled carbon nanotubes (Fe3O4-MWCNTs) nanocomposites were synthesized by in situ growth and direct mixing methods, respectively. And their effectiveness as Fenton-like catalysts for the degradation of the azo dye orange Ⅱ was studied in this work. The composition, structure, morphology, and properties of the prepared Fe3O4-MWCNTs magnetic nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and magnetic property detection (VSM). The results show that the Fe3O4-MWCNTs nanocomposites obtained by in situ growth method have better magnetic properties and the Fe3O4 nanoparticles are uniformly distributed on the surface of carbon nanotubes. The degradation experiments indicated that the removal efficiency of orange Ⅱ reached up to 99.9% after 6 h at 25 ℃ under the following conditions: concentration of orange Ⅱ at 50 mg/L, H2O2 dosage was 555 μL, Fe3O4-MWCNTs magnetic nanocomposites dosage was 0.025 g, pH 2.5. The Fe3O4-MWCNTs composite also shows excellent stability and reproducibility, with the removal of orange Ⅱ remaining above 97% after four cycles of magnetic separation.
|
Published: 10 May 2024
Online: 2024-05-13
|
|
Fund:Yunnan Fundamental Research Projects (202201AT070140) and Yunnan Ten Thousand Talents Plan Young & Elite Talents Project (YNWR-QNBJ-2019-085). |
|
|
1 Lu Yang,Pan Yonghua,Shen Jinjin,et al. China Dyeing and Finishing, 2012, 30(20), 50 (in Chinese). 卢鸯, 潘勇华, 沈金金, 等. 印染, 2012, 30(20), 50. 2 Hashemi S H, Kaykhaii M. Emerging freshwater pollutants, Elsevier, Iran, 2022, pp. 267. 3 Zhang S W, Xu W Q, Zeng M Y, et al. Journal of Materials Chemistry A, 2013, 1, 11691. 4 Martinez-Huitle C, Brillas E. Applied Catalysis B:Environmental, 2009, 87(3-4), 105. 5 Olukanni O D, Osuntoki A A, Gbenle G O, et al. Journal of Hazardous Materials, 2010, 184 (1-3), 290. 6 Wang Y, Wang R T, Lin N P, et al. Chemosphere, 2022, 293,133614. 7 Gogate P R, Pandit A B. Advances in Environmental Research, 2004, 8 (3-4), 501. 8 Soriano-molina P, Sanchez J G, Malato S, et al. Chemical Engineering Journal, 2017, 331, 84. 9 Joseph De Laat, Herve Gallard. Environmental Science and Technology, 1999, 33(16), 2726. 10 Sabrina A B, Leadin S K, Ivan C, et al. New Journal of Chemistry, 2022, 46, 263. 11 Zhang H, Chen S, Zhang H G, et al. Frontiers of Environmental Science and Engineering, 2019, 13, 43. 12 Xiang H, Ren G, Zhong Y J, et al.Nanomaterials, 2021, 11 (2), 330. 13 Wei X R, Zhu N W, Huang X X, et al. Journal of Environmental Ma-nagement, 2020, 260, 110072. 14 Hwa K Y, Ganguly A, Santhan A, et al. ACS Sustainable Chemistry and Engineering, 2022, 10 (3),1298. 15 Shen Huijuan, Han Taikun, Deng Liqiang, et al. Micronanoelectronic Technology, 2022, 59(5),393 (in Chinese) 申惠娟, 韩太坤, 邓锂强, 等.微纳电子技术, 2022, 59(5),393. 16 Mehta D, Thakur N, Nagaiah T C. Materials Advances, 2022, 3,5027. 17 Tang J, Zheng S B, Jiang S X, et al. Rare Metals, 2021, 40, 478. 18 Mallakpour S, Khadem E. Chemical Engineering Joural, 2016, 302, 344. 19 Wang H, Jiang H, Wang S, et al. RSC Advances, 2014, 86(4), 45809. 20 Tan H, Feng W, Ji P. Bioresource Technology, 2012, 115, 172. 21 Deng J, Wen X, Wang Q J M R B. Materials Research Bulletin, 2012, 47, 3369. 22 Wang X, Zhao Z, Qu J, et al. Journal of Physics and Chemistry of So-lids, 2010, 71, 673. 23 Lee P L, Chiu Y K, Sun Y C, et al. Carbon, 2010, 48, 1397. 24 Liu Y, Jiang W, Wang Y, et al. Journal of Magnetism and Magnetic Materials,2009, 321, 408. 25 Zhao S, Asuha S J P T. Powder Technology, 2010, 197, 295. 26 Jiang L, Gao L J C O M. Chemistry of Materials, 2003, 15, 2848. 27 Zhou Lixin, Wei Xiaoqin, Cai Meiqiang et al. Physical Testing and Chemical Analysis(Part B:Chemical Analysis) , 2014, 50(9),1061 (in Chinese). 周丽新, 魏晓琴, 蔡美强, 等.理化检验-化学分册, 2014, 50(9), 1061. 28 Zhou Lixin, Wei Xiaoqin, Cai Meiqiang et al. Physical Testing and Chemical Analysis(Part B:Chemical Analysis) 2014, 50(8), 929 (in Chinese) 周丽新, 魏晓琴, 蔡美强, 等.理化检验-化学分册,2014, 50(8), 929. 29 Liang Xianqing, Liu Wei, Li Bao. Journal of Magnetic Materials and Devices, 2012, 43(2), 18 (in Chinese). 梁先庆, 刘伟, 李苞.磁性材料及器件, 2012, 43(2),18. 30 Hou Xingang, Zhou Xiaomeng, Jiang Lili, et al. Journal of Lanzhou University of Technology, 2016, 42(1), 26 (in Chinese). 侯新刚, 周晓蒙, 姜丽丽, 等. 兰州理工大学学报, 2016, 42(1), 26. 31 Tian X J, Liu Y F,Chi W D, et al. Water, Air, and Soil Pollution, 2017, 228, 297. 32 Wang Dong, Zhang Yaming, Liu Fuyong, et al. Chemical Reagents, 2020, 42(3), 232 (in Chinese). 王栋, 张雅明, 刘富永,等.化学试剂, 2020, 42(3), 232. 33 Dong W, Li W B, Wang G H, et al. Science of the Total Environment, 2017, 574, 1326. 34 Cleveland V, Bingham J P, Eunsung K. Separation and Purification Technology, 2014, 133, 388. 35 De Laat J, Le Truong G. Applied Catalysis B: Environmental, 2006, 66(1-2),137. |
|
|
|