INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
A Review on the Technique of Photothermal Nanomaterials Based Thermal Lateral Flow Assay |
CHENG Yirong, LI Wanwan*
|
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract Lateral flow assay (LFA) has been widely used in rapid disease diagnostics due to its simplicity, rapidity, portability and low cost. However, as the demand for medical testing evolves, it is increasingly difficult for traditional LFA to meet the requirement of high sensitivity. Many new functional nanomaterials have been introduced into LFA as signal labels to achieve high detection sensitivity, among which thermal LFA based on photothermal nanomaterials has been rapidly developed in recent years due to the advantages of signal stability, being able to detect signal of all labels within the detection line, low cost and high sensitivity. The core issue of establishing thermal signal LFA is the development and application of ideal photothermal nanomaterials for thermal labels. In this review, we will introduce the mechanism of photothermal effect, the characteristics of several typical photothermal nanomaterials, recent progress of thermal LFA based on photothermal nanomaterials and designation of LFA rea-der. The paper also summarizes several evaluation criteria of materials for thermal labels and future prospects of thermal LFA reader. We hope that our review will help drive the development of thermal LFA technology based on photothermal nanomaterials.
|
Published: 25 April 2024
Online: 2024-04-28
|
|
Fund:National Natural Science Foundation of China (81971704). |
|
|
1 Grubb A O, Glad U C. U. S. patent application, 4168146, 1979. 2 Choi D H, Lee S K, Oh Y K, et al. Biosensors and Bioelectronics, 2010, 25(8), 1999. 3 Chen J, Wang L, Lu L, et al. Analytical Chemistry, 2017, 89(12), 6740. 4 Morales-Narváez E, Naghdi T, Zor E, et al. Analytical Chemistry, 2015, 87(16), 8573. 5 Li R, Meng C, Wen Y, et al. Microchimica Acta, 2019, 186(12), 748. 6 Loynachan C N, Thomas M R, Gray E R, et al. ACS Nano, 2018, 12(1), 279. 7 Wang J, Jiang C, Jin J, et al. Angewandte Chemie International Edition, 2021, 60(23), 13042. 8 Fu X, Cheng Z, Yu J, et al. Biosensors and Bioelectronics, 2016, 78, 530. 9 Tran V, Walkenfort B, König M, et al. Angewandte Chemie International Edition, 2019, 58(2), 442. 10 Du S, Wang Y, Liu Z, et al. Biosensors and Bioelectronics, 2019, 144, 111670. 11 Cheng N, Song Y, Shi Q, et al. Analytical Chemistry, 2019, 91(21), 13986. 12 Liu X, Wang K, Cao B, et al. Analytical Chemistry, 2021, 93(7), 3626. 13 Orlov A V, Bragina V A, Nikitin M P, et al. Biosensors and Bioelectro-nics, 2016, 79, 423. 14 Nguyen V T, Song S, Park S, et al. Biosensors and Bioelectronics, 2020, 152, 112015. 15 Zha Z, Yue X, Ren Q, et al. Advanced Materials, 2013, 25(5), 777. 16 Qin Z, Chan W C W, Boulware D R, et al. Angewandte Chemie International Edition, 2012, 51(18), 4358. 17 Zhang D, Du S, Su S, et al. Biosensors and Bioelectronics, 2019, 123, 19. 18 Gao M, Zhu L, Peh C K, et al. Energy & Environmental Science, 2019, 12(3), 841. 19 Li J, Li S, Yang S, et al. ACS Applied Bio Materials, 2022, 5(5), 2224. 20 Bisoyi H K, Urbas A M, Li Q. Advanced Optical Materials, 2018, 6(15), 1800458. 21 Ng K K, Zheng G. Chemical Reviews, 2015, 115(19), 11012. 22 Li J, Zhang W, Ji W, et al. Journal of Materials Chemistry B, 2021, 9(38), 7909. 23 Wang Y, Qin Z, Boulware D R, et al. Analytical Chemistry, 2016, 88(23), 11774. 24 Pang R, Zhu Q, Wei J, et al. RSC Advances, 2021, 11(45), 28388. 25 Zhan L, Granade T, Liu Y, et al. Microsystems & Nanoengineering, 2020, 6(1), 54. 26 Qu Z, Wang K, Alfranca G, et al. Nanoscale Research Letters, 2020, 15(1), 10. 27 Zhang H, Zhang Z, Wang Y, et al. ACS Applied Materials & Interfaces, 2016, 8(44), 29933. 28 Shirshahi V, Tabatabaei S N, Hatamie S, et al. Colloids and Surfaces B:Biointerfaces, 2020, 186, 110721. 29 Ren S, Li Q, Wang J, et al. Journal of Hazardous Materials, 2021, 402, 123781. 30 Li S, Zhang Y, Wen W, et al. Biosensors and Bioelectronics, 2019, 133, 223. 31 Lu Y, Wang Q, Zhang C, et al. Food Analytical Methods, 2021, 14(1), 127. 32 Parolo C, Sena-Torralba A, Bergua J F, et al. Nature Protocols, 2020, 15(12), 3788. 33 Zhang Z, Wang J, Nie X, et al. Journal of the American Chemical Society, 2014, 136(20), 7317. 34 Jain P K, Lee K S, El-Sayed I H, et al. The Journal of Physical Chemistry B, 2006, 110(14), 7238. 35 Kumar P P P, Lim D K. Pharmaceutics, 2022, 14(1), 70. 36 Zharov V P, Galitovsky V, Viegas M. Applied Physics Letters, 2003, 83(24), 4897. 37 Lin L K, Huang P Y, Dutta S, et al. Particle & Particle Systems Characterization, 2019, 36(7), 1900133. 38 Gonzalez-Moa M J, Van Dorst B, Lagatie O, et al. ACS Infectious Diseases, 2018, 4(6), 912. 39 Oh H K, Kim K, Park J, et al. Biosensors and Bioelectronics, 2022, 205, 114094. 40 Zhan L, Guo S Z, Song F, et al. Nano Letters, 2017, 17(12), 7207. 41 Robinson J T, Tabakman S M, Liang Y, et al. Journal of the American Chemical Society, 2011, 133(17), 6825. 42 Liu H, Neal A T, Zhu Z, et al. ACS Nano, 2014, 8(4), 4033. 43 Sun C, Wen L, Zeng J, et al. Biomaterials, 2016, 91, 81. 44 Peng J, Lai Y, Chen Y, et al. Small, 2017, 13(15), 1603589. 45 Liu Y, Ai K, Liu J, et al. Advanced Materials, 2013, 25(9), 1353. 46 Lee H, Dellatore S M, Miller W M, et al. Science, 2007, 318(5849), 426. 47 Lee H, Scherer N F, Messersmith P B. Proceedings of the National Aca-demy of Sciences, 2006, 103(35), 12999. 48 Lou D, Ji L, Fan L, et al. Langmuir, 2019, 35(14), 4860. 49 Liu S, Dou L, Yao X, et al. Food Chemistry, 2020, 315, 126310. 50 Gubala V, Harris L F, Ricco A J, et al. Analytical Chemistry, 2012, 84(2), 487. 51 Zhang D, Du S, Su S, et al. Biosensors and Bioelectronics, 2019, 123, 19. |
|
|
|