REVIEW PAPER |
|
|
|
|
|
Application of Novel Porous Materials in Noble Gas Xe/Kr Separation |
LIU Boyu, GONG Youjin, LIU Qiang, LI Wei, WU Xiaonan, XIONG Shunshun, HU Sheng, WANG Xiaolin
|
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 |
|
|
Abstract The separation of xenon (Xe) and krypton (Kr) is very important for atmospheric radioactive gases radionuclide monitoring, industrial production of noble gases and spent nuclear fuel reprocessing. The conventional, cryogenic methods are used to extract xenon and krypton from air, but this is highly energy and capital intensive. Therefore, developing less energy intensive and capital economical alternatives, such as physisorption separation at room temperature using porous materials, is a critical and urgent issue. The emerging novel solid porous materials such as metal-organic frameworks (MOFs), porous organic cage molecules exhibit excellent performance on noble gases (xenon and krypton) separation and favorable application foreground. This article systematically summarizes the research progress of novel porous materials applied in noble gas Xe/Kr separation. The research work from three fa-cets, including application of theoretical calculation in Xe/Kr separation, separation of high concentration Xe and Kr, and separation of extremely low concentration Xe and Kr are reviewed and discussed. Finally, a critical comment on prospects of the future research of Xe/Kr separation using novel porous materials is addressed in order to guide the newcomer in this field.
|
Published: 10 October 2017
Online: 2018-05-07
|
|
|
|
1 Denisova N, Gavare Z, Revalde G, et al. A study of capillary discharge lamps in Ar-Hg and Xe-Hg mixtures[J]. J Phys D: Appl Phys,2011,44(15):155201.
2 Bussiahn R, Gortchakov S, Lange H, et al. Experimental and theoretical investigations of a low-pressure He-Xe discharge for lighting purpose[J]. J Appl Phys,2004,95(9):4627.
3 Rossella F, Rose H M, Witte C, et al. Design and characterization of two bifunctional cryptophane A—Based host molecules for xenon magnetic resonance imaging applications[J]. Chem Plus Chem,2014,79(10):1463.
4 Hollenberg M, Dougherty J. Liver blood flow measured by portal venous and hepatic arterial routes with Kr-85[J]. Am J Physiology-Legacy Content,1966,210(5):926.
5 Garg R. Xenon for induction of anaesthesia[J]. Surgery,2008,52:1273.
6 袁良本, 谈德清. 核工业中的氪和氙[M]. 北京:原子能出版社,1983:308.
7 Hagiwara K, Ebihara T, Urasato N, et al. Application of 129 Xe NMR to structural analysis of MoS2 crystallites on Mo/Al2O3 hydrodesulfurization catalyst[J]. Appl Catal A: Gen,2005, 285(1):132.
8 Chakkarapani E, Thoresen M, Hobbs C E, et al. A closed-circuit neonatal xenon delivery system: A technical and practical neuroprotection feasibility study in newborn pigs[J]. Anesthesia Analgesia,2009,109(2):451.
9 Schröder L, Meldrum T, Smith M, et al. Temperature response of Xe 129 depolarization transfer and its application for ultrasensitive NMR detection[J]. Phys Rev Lett,2008,100(25):257603.
10 Auer M, Kumberg T, Sartorius H, et al. Ten years of development of equipment for measurement of atmospheric radioactive xenon for the verification of the CTBT[J]. Pure Appl Geophys,2010,167(4-5):471.
11 Ma D F. Recovery of krypton and xenon and their applications[J]. Cryogenic Technol, 2007(B12):1(in Chinese).
马大方. 氪气和氙气的制备与应用[J]. 深冷技术,2007(B12):1.
12 Kerry F G. Industrial gas handbook: Gas separation and purification[M]. CRC Press,2007.
13 Jameson C J, Jameson A K, Lim H M. Competitive adsorption of xenon and krypton in zeolite NaA:129Xe nuclear magnetic resonance studies and grand canonical Monte Carlo simulations[J]. J Chem Phys,1997,107(11):4364.
14 Thallapally P K, Grate J W, Motkuri R K. Facile xenon capture and release at room temperature using a metal-organic framework: A comparison with activated charcoal[J]. Chem Commun,2012,48(3):347.
15 Stock N,et al. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites[J]. Chem Rev,2011,112(2):933.
16 Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science,2010,329(5990):424.
17 Grzesiak A L, Uribe F J, Ockwig N W, et al. Polymer-induced he-teronucleation for the discovery of new extended solids[J]. Angew Chem Int Ed,2006,45(16):2553.
18 Cohen S M. Modifying MOFs: New chemistry, new materials[J]. Chem Sci,2010,1(1):32.
19 Britt D, Furukawa H, Wang B, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites[J]. PNAS,2009,106(49):20637.
20 Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem Soc Rev,2009,38(5):1477.
21 Zhang Z, Zhao Y, Gong Q, et al. MOFs for CO2 capture and separation from flue gas mixtures: The effect of multifunctional sites on their adsorption capacity and selectivity[J]. Chem Commun,2013,49(7):653.
22 Lu W, Yuan D, Zhao D, et al. Porous polymer networks: Synthesis, porosity, and applications in gas storage/separation[J]. Chem Mater,2010,22(21):5964.
23 Farrusseng D. Metal-organic frameworks: Applications from cataly-sis to gas storage[M].Weinheim,Germany: John Wiley Sons,2011.
24 Lee J Y, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts[J]. Chem Soc Rev,2009,38(5):1450.
25 iXamena F X L, Abad A, Corma A, et al. MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF[J]. J Catal,2007,250(2):294.
26 Feng D,Gu Z Y, Li J K,et al. Zirconium-metalloporphyrin PCN-222:Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts[J].Angew Chem,2012,124(41):10453.
27 Liu B, Wu W P, Hou L, et al. Four uncommon nanocage-based Ln-MOFs: Highly selective luminescent sensing for Cu2+ ions and selective CO2 capture[J]. Chem Commun,2014,50(63): 8731.
28 White K A, Chengelis D A, Gogick K A, et al. Near-infrared luminescent lanthanide MOF barcodes[J]. J Am Chem Soc,2009,131(50):18069.
29 Tan L L, Li H, Zhou Y, et al. Zn2+-triggered drug release from biocompatible zirconium MOFs equipped with supramolecular gates[J]. Small,2015,11(31):3807.
30 Horcajada P, Chalati T, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nat Mater,2010,9(2):172.
31 Salles F, et al. Molecular dynamics simulations of brea-thing MOFs: Structural transformations of MIL-53 (Cr) upon thermal activation and CO2 adsorption[J]. Angew Chem,2008,120(44):8615.
32 An J, Rosi N L. Tuning MOF CO2 adsorption properties via cation exchange[J]. J Am Chem Soc,2010,132(16):5578.
33 Yazaydin A O, Benin A I, et al. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules[J]. Chem Mater,2009,21(8):1425.
34 Xiong S, Gong Y, Wang H, et al. A new tetrazolate zeolite-like framework for highly selective CO2/CH4 and CO2/N2 separation[J]. Chem Commun,2014,50(81):12101.
35 Chen B, Ockwig N W, Millward A R, et al. High H2 adsorption in a microporous metal-organic framework with open metal sites[J]. Angew Chem,2005,117(30):4823.
36 Panella B, Hirscher M, Pütter H, et al. Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared[J]. Adv Funct Mater,2006,16(4):520.
37 Orcajo G, Villajos J A, Martos C, et al. Influence of chemical composition of the open bimetallic sites of MOF-74 on H2 adsorption[J]. Adsorption,2015,21(8):589.
38 Haldoupis E, Watanabe T, Nair S, et al. Quantifying large effects of framework flexibility on diffusion in MOFs: CH4 and CO2 in ZIF-8[J]. Chem Phys Chem,2012,13(15):3449.
39 Llewellyn P L, Bourrelly S, Serre C, et al. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101[J]. Langmuir,2008,24(14):7245.
40 Wood C D, Tan B, Trewin A, et al. Microporous organic polymers for methane storage[J]. Adv Mater,2008,20(10):1916.
41 Liu Y, Liu D, Yang Q, et al. Comparative study of separation performance of COFs and MOFs for CH4/CO2/H2 mixtures[J]. Ind Eng Chem Res,2010,49(6):2902.
42 Nijem N, Wu H, Canepa P, et al. Tuning the gate opening pressure of metal-organic frameworks (MOFs) for the selective separation of hydrocarbons[J]. J Am Chem Soc,2012, 134(37):15201.
43 Hou X J, He P, Li H, et al. Understanding the adsorption mechanism of C2H2, CO2, and CH4 in isostructural metal-organic frameworks with coordinatively unsaturated metal sites[J]. J Phys Chem C,2013,117(6):2824.
44 Jorge M, Fischer M, Gomes J R B, et al. Accurate model for predicting adsorption of olefins and paraffins on MOFs with open metal sites[J]. Ind Eng Chem Res,2014,53(40):15475.
45 Ling Y, Song C, Feng Y, et al. A metal-organic framework based on cyclotriphosphazene-functionalized hexacarboxylate for selective adsorption of CO2 and C2H6 over CH4 at room temperature[J]. CrystEngComm,2015,17(33):6314.
46 Liu K, Li B, Li Y, et al. An N-rich metal-organic framework with an rht topology: High CO2 and C2 hydrocarbons uptake and selective capture from CH4[J]. Chem Commun,2014, 50(39):5031.
47 Ploegmakers J, Japip S, Nijmeijer K. Mixed matrix membranes containing MOFs for ethylene/ethane separation Part A: Membrane preparation and characterization[J]. J Membr Sci,2013,428:445.
48 Holst J R, Trewin A, Cooper A I. Porous organic molecules[J]. Nat Chem,2010,2(11):915.
49 Ryan P, Farha O K, Broadbelt L J, et al. Computational screening of metal-organic frameworks for xenon/krypton separation[J]. AIChE J,2011,57(7):1759.
50 Sikora B J, Wilmer C E, Greenfield M L, et al. Thermodynamic analysis of Xe/Kr selectivity in over 137000 hypothetical metal-orga-nic frameworks[J]. Chem Sci,2012,3(7):2217.
51 Greathouse J A, Kinnibrugh T L, Allendorf M D. Adsorption and separation of noble gases by IRMOF-1: Grand canonical Monte Carlo simulations[J]. Ind Eng Chem Res,2009,48(7):3425.
52 Gurdal Y, Keskin S. Atomically detailed modeling of metal organic frameworks for adsorption, diffusion, and separation of noble gas mixtures[J]. Ind Eng Chem Res,2012, 51(21):7373.
53 Gurdal Y, Keskin S. Predicting noble gas separation performance of metal organic frameworks using theoretical correlations[J]. J Phys Chem C,2013,117(10):5229.
54 Wang Q, Wang H, Peng S, et al. Adsorption and separation of Xe in metal-organic frameworks and covalent-organic materials[J]. J Phys Chem C,2014,118(19):10221.
55 Vazhappilly T, Ghanty T K, Jagatap B N. Computational modeling of adsorption of Xe and Kr in M-MOF-74 metal organic frame works with different metal atoms[J]. J Phys Chem C, 2016,120(20):10968.
56 Wei Jianwei. Effect of gas absorption and decomposition on nanotube-graphene complex defect[J]. J Chongqing University of Technology(Natural Science),2015,29(12):48(in Chinese).
韦建卫. 纳米管-石墨烯复合缺陷结构的几种气体吸附分解效应[J]. 重庆理工大学学报(自然科学版),2015,29(12):48.
57 Liu J, Strachan D M, Thallapally P K. Enhanced noble gas adsorption in Ag@MOF-74Ni[J]. Chem Commun,2014,50(4):466.
58 Grosse R, Gedeon A, Watermann J, et al. Adsorption and 129Xe nmr of xenon in silver-exchanged Y zeolites: Application to the location of silver cations[J]. Zeolites,1992, 12(8):909.
59 Gedeon A, Burmeister R, Grosse R, et al. 129Xe NMR for the study of oxidized and reduced AgX zeolites[J]. Chem Phys Lett,1991,179(1-2):191.
60 Nguyen H G, Konya G, Eyring E M, et al. Theoretical study on the interaction between xenon and positively charged silver clusters in gas phase and on the (001) chabazite surface[J]. J Phys Chem C,2009,113(29):12818.
61 Wang H, Yao K, et al. The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases[J]. Chem Sci,2014,5(2): 620.
62 Xiong S, Liu Q, et al. A flexible zinc tetrazolate framework exhibiting breathing behaviour on xenon adsorption and selective adsorption of xenon over other noble gases[J]. J Mater Chem A,2015,3(20):10747.
63 Fernandez C A, Liu J, Thallapally P K, et al. Switching Kr/Xe selectivity with temperature in a metal-organic framework[J]. J Am Chem Soc,2012,134(22):9046.
64 Mohamed M H, et al. Hybrid ultra-microporous materials for selective xenon adsorption and separation[J]. Angew Chem Int Ed,2016,55(29):8285.
65 Bae Y S, Hauser B G, Colón Y J, et al. High xenon/krypton selectivity in a metal-organic framework with small pores and strong adsorption sites[J]. Microp Mesop Mater,2013,169: 176.
66 Chen X, Plonka A M, et al. Direct observation of Xe and Kr adsorption in a Xe-selective microporous metal-organic framework[J]. J Am Chem Soc,2015,137(22):7007.
67 Mueller U, et al. Metal-organic frameworks—Prospective industrial applications[J]. J Mater Chem,2006,16(7):626.
68 Meek S T, Teich-McGoldrick S L, Perry J J, et al. Effects of pola-rizability on the adsorption of noble gases at low pressures in monohalogenatedisoreticular metal-organic frameworks[J]. J Phys Chem C,2012,116(37):19765.
69 Boutin A, Springuel-Huet M A, et al. Breathing transitions in MIL-53 (Al) metal-organic framework upon xenon adsorption[J]. Angew Chem Int Ed,2009,48(44):8314.
70 Liu J, Thallapally P K, Strachan D. Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants[J]. Langmuir,2012,28(31):11584.
71 Chen L, Reiss P S, Chong S Y, et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages[J]. Nat Mater,2014,13(10):954.
72 Patil R S, Banerjee D, et al. Noria: A highly xe-selective nanoporous organic solid[J]. Chem—A Eur J,2016,22(36):12618.
73 Banerjee D, Simon C M, Plonka A M, et al. Metal-organic framework with optimally selective xenon adsorption and separation[J]. Nat Commun,DOI:10.1038/ncomms11831.
74 Dorcheh A S, Denysenko D, Volkmer D, et al. Noble gases and microporous frameworks; from interaction to application[J]. Microp Mesop Mater,2012,162:64.
75 Zhong S, Wang Q, Cao D. ZIF-derived nitrogen-doped porous carbons for Xe adsorption and separation[J]. Sci Rep,2016,6:21295. |
|
|
|