REVIEW PAPER |
|
|
|
|
|
Advances in Magnetomechanical Coupling Constitutive Relations of Magnetorheological Elastomers |
YUAN Feiyang, WAN Qiang, ZHANG Canyang, LI Xu
|
Institute of Systems Engineering, China Academy of Engineering Physics,Mianyang 621999 |
|
|
Abstract Magnetorheological elastomers are a new class of smart materials whose mechanical properties may be controlled by external magnetic field in reversible processes. These materials typically consist of dispersive micron-sized magnetic particles and poly-mer matrix (like elastomers), and the modulus, damping, deformation can be rapidly, continuously and reversibly changed by appl-ying magnetic field. Currently, the macroscopic mechanical elements combination modeling based on dynamic experiment, microscopic dipole force analysis and macroscopic continuum mechanics description have become the main methods to study the constitutive relations with magnetic induction and multi-field coupling for these composite materials. Moreover, numerical simulation has also become the effective means to analyze particles aggregation structure revolution and magnetostrictive behavior of magnetorheological materials. This paper focuses on introducing the basic theories and research methodologies for the magnetomechanical coupling of magnetorheological elastomers, exploring the research trend, and aims at providing the theoretical fundamentals for the applicational research on magneto-sensitive materials.
|
Published: 10 October 2017
Online: 2018-05-07
|
|
|
|
1 Winslow W M. Method and means for translating electrical impulses into mechanical force: US 2417850[P]. 1947-03-25.
2 Rabinow J. The magnetic fluid clutch[J]. Trans Am Inst Electr Eng,1948, 67(2):1308.
3 Wang L Z,Li Y R.Research conditions and advances in magnetorheological materials[J].Aviation Eng Maint,1997(7):9 (in Chinese).
王立忠, 李云瑞. 磁流变体研究状况及进展[J]. 航空制造工程,1997(7):9.
4 Popplewell J, Rosensweig R E, Siller J K. Magnetorheology of ferrofluid composites[J]. J Magn Magn Mater, 1995,149(1):53.
5 Shiga T, Okada A, Kurauchi T. Magnetroviscoelastic behavior of composite gels[J]. J Appl Polym Sci,1995, 58(4):787.
6 Jolly M R, Carlson J D, Muñoz B C, et al. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix[J]. J Intell Mater Syst Struct,1996,7(6):613.
7 Jolly M R, Carlson J D, Munoz B C. A model of the behaviour of magnetorheological materials[J]. Smart Mater Struct,1996,5(5):607.
8 Lokander M, Stenberg B. Performance of isotropic magnetorheological rubber materials[J]. Polym Test, 2003,22(3):245.
9 Lokander M, Stenberg B. Improving the magnetorheological effect in isotropic magnetorheological rubber materials[J]. Polym Test,2003,22(6):677.
10 Chen L, Gong X L, Li W H. Microstructures and viscoelastic pro-perties of anisotropic magnetorheological elastomers[J]. Smart Mater Struct,2007,16(6):2645.
11 Zhou G Y. Shear properties of a magnetorheological elastomer[J]. Smart Mater Struct,2003,12(1):139.
12 Gong X L, Zhang X Z, Zhang P Q. Fabrication and characterization of isotropic magnetorheological elastomers[J]. Polym Test,2005,24(5):669.
13 Yang J, Du H, Li W, et al. Experimental study and modeling of a novel magnetorheological elastomer isolator[J]. Smart Mater Struct,2013,22(11):117001.
14 Kallio M. The elastic and damping properties of magnetorheological elastomers[M]. Finland:VTT Technical Research Centre,2005.
15 Bellan C, Bossis G. Field dependence of viscoelastic properties of MR elastomers[J]. Int J Mod Phys B,2002, 16(17-18):2447.
16 Zhou G Y. Complex shear modulus of a magnetorheological elastomer[J]. Smart Mater Struct,2004,13(5): 1203.
17 Chen L, Gong X, Jiang W, et al. Investigation on magnetorheological elastomers based on natural rubber[J]. J Mater Sci,2007,42(14):5483.
18 Stepanov G V, Abramchuk S S, Grishin D A, et al. Effect of a ho-mogeneous magnetic field on the viscoelastic behavior of magnetic elastomers[J]. Polymer,2007,48(2):488.
19 Li W H, Zhou Y, Tian T F. Viscoelastic properties of MR elastomers under harmonic loading[J]. Rheol Acta, 2010,49(7):733.
20 Chen L, Jerrams S. A rheological model of the dynamic behavior of magnetorheological elastomers[J]. J Appl Phys,2011,110(1):013513.
21 Shuib R K, Pickering K L. Investigation and modelling of damping mechanisms of magnetorheological elastomers[J]. J Appl Polym Sci,2016,DOI:10.10021app.43247.
22 Davis L C. Model of magnetorheological elastomers[J]. J Appl Phys,1999,85(6):3348.
23 Shen Y, Golnaraghi M F, Heppler G R. Experimental research and modeling of magnetorheological elastomers[J]. J Intell Mater Syst Struct,2004,15(1):27.
24 Zhu Y, Gong X, Dang H, et al. Numerical analysis on magnetic-induced shear modulus of magnetorheological elastomers based on multi-chain model[J]. Chin J Chem Phys,2006,19(2):126.
25 Zhang X, Peng S, Wen W, et al. Analysis and fabrication of patterned magnetorheological elastomers[J]. Smart Mater Struct,2008,17(4):045001.
26 Ivaneyko D, Toshchevikov V P, Saphiannikova M, et al. Magneto-sensitive elastomers in a homogeneous magnetic field: A regular rectangular lattice model[J]. Macromol Theory Simul,2011,20(6):411.
27 Ivaneyko D, Toshchevikov V, Borin D, et al. Mechanical properties of magneto-sensitive elastomers in a homogeneous magnetic field: Theory and experiment[J].Macromol Symp,2014,338(1):96.
28 Chen S W, Li R, Zhang Z, et al. Micromechanical analysis on tensile modulus of structured magneto-rheological elastomer[J]. Smart Mater Struct,2016,25(3):035001.
29 Fang S, Gong X L, Zhang X Z, et al. Mechanical properties test and analysis of magnetorheological elastomers[J].J Univ Sci Technol China,2004,34(4):456(in Chinese).
方生, 龚兴龙, 张先舟, 等. 磁流变弹性体力学性能的测试与分析[J]. 中国科学技术大学学报,2004, 34(4):456.
30 Biller A M, Stolbov O V, Raikher Y L. Modeling of particle interactions in magnetorheological elastomers[J]. J Appl Phys,2014,116(11):114904.
31 Brown W F. Magnetoelasticity interactions[M]. Berlin:Springer,1966.
32 Tiersten H F. Variational principle for saturated magnetoelastic insulators[J]. J Math Phys,1965,6(5): 779.
33 Truesdell C, Toupin R. The classical field theories[M]∥Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie. Springer Berlin Heidelberg,1960:226.
34 DeSimone A, Podio-Guidugli P. On the continuum theory of defor-mable ferromagnetic solids[J]. Arch Ration Mech Anal,1996,136(3):201.
35 Mooney M. A theory of large elastic deformation[J]. J Appl Phys,1940,11(9):582.
36 Rivlin R S. Large elastic deformations of isotropic materials. Ⅳ. Further developments of the general theory[J]. Phil Trans R Soc Lond A,1948,241(835):379.
37 Treloar L R G. The physics of rubber elasticity[M]. UK:Oxford University Press,1975.
38 Borcea L, Bruno O. On the magneto-elastic properties of elastomer-ferromagnet composites[J]. J Mech Phys Solid,2001,49(12):2877.
39 Brigadnov I A, Dorfmann A. Mathematical modeling of magneto-sensitive elastomers[J]. Int J Solid Struct, 2003,40(18):4659.
40 Dorfmann A, Ogden R W. Magnetoelastic modelling of elastomers[J]. Eur J Mech A:Solid,2003,22(4):497.
41 Kankanala S V, Triantafyllidis N. On finitely strained magnetorheological elastomers[J]. J Mech Phys Solid, 2004,52(12):2869.
42 Yin H M, Sun L Z, Chen J S. Magneto-elastic modeling of compo-sites containing chain-structured magnetostrictive particles[J]. J Mech Phys Solid,2006,54(5):975.
43 Bustamante R. Transversely isotropic nonlinear magneto-active elastomers[J]. Acta Mech,2010,210(3-4):183.
44 Danas K, Kankanala S V, Triantafyllidis N. Experiments and mo-deling of iron-particle-filled magnetorheological elastomers[J]. J Mech Phys Solid,2012,60(1):120.
45 Saxena P, Hossain M, Steinmann P. Nonlinear magneto-viscoelasticity of transversally isotrpic magneto-active polymers[J]. Proc Math Phys Eng Sci,2014,470:20140082.
46 Saxena P, Hossain M, Steinmann P. A theory of finite deformation magneto-viscoelasticity[J]. Int J Solid Struct,2013,50(24):3886.
47 Itskov M, Khiêm V N. A polyconvex anisotropic free energy function for electro-and magneto-rheological elastomers[J]. Math Mech Solid,2014,21(9):1126.
48 Han Y, Zhang Z, Faidley L A E, et al. Microstructure-based mode-ling of magneto-rheological elastomers[C]∥SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics,2012.
49 Han Y, Hong W, Faidley L A E. Field-stiffening effect of magneto-rheological elastomers[J]. Int J Solid Struct,2013,50(14):2281.
50 Rudykh S, Bertoldi K. Stability of anisotropic magnetorheological elastomers in finite deformations: A micromechanical approach[J]. J Mech Phys Solid,2013,61(4):949.
51 Eem S H, Jung H J, Koo J H. Modeling of magneto-rheological elastomers for harmonic shear deformation[J]. IEEE Trans Magn,2012,48(11):3080.
52 Yang J, Gong X, Deng H, et al. Investigation on the mechanism of damping behavior of magnetorheological elastomers[J]. Smart Mater Struct,2012,21(12):125015.
53 Schoeck G. Internal friction due to precipitation[J]. Phys Status Solidi (B),1969,32(2):651.
54 Lavernia E J, Perez R J, Zhang J. Damping behavior of disconti-nuously reinforced ai alloy metal-matrix composites[J]. Metall Mater Trans A,1995,26(11):2803.
55 Weiss P. L′hypothèse du champ moléculaire et la propriété ferromagnétique[J]. J Phys Theor Appl,1907,6(1): 661.
56 Zhang X, Li W, Gong X L. An effective permeability model to predict field-dependent modulus of magnetorheological elastomers[J]. Commun Nonlinear Sci Numer Simul,2008,13(9):1910.
57 Ly H V, Reitich F, et al. Simulations of particle dyna-mics in magnetorheological fluids[J]. J Comput Phys,1999,155(1):160.
58 Haghgooie R, Doyle P S. Structural analysis of a dipole system in two-dimensional channels[J]. Phys Rev E,2004,70(6):061408.
59 Climent E, Maxey M R, Karniadakis G E. Dynamics of self-assembled chaining in magnetorheological fluids[J]. Langmuir,2004,20(2):507.
60 Liu T, Gong X, Xu Y, et al. Simulation of magneto-induced rearrangeable microstructures of magnetorheological plastomers[J]. Soft Matter,2013,9(42):10069.
61 Stolbov O V, Raikher Y L, Balasoiu M. Modelling of magnetodipolar striction in soft magnetic elastomers[J]. Soft Matter,2011,7(18):8484.
62 Metsch P, Kalina K A, Spieler C, et al. A numerical study on magnetostrictive phenomena in magnetorheological elastomers[J]. Comput Mater Sci,2016,124:364.
63 Melle S, Calderón O G, Rubio M A, et al. Rotational dynamics in dipolar colloidal suspensions: Video microscopy experiments and si-mulations results[J]. J Non-Newton Fluid Mech,2002,102(2):135.
64 Klingenberg D J, Olk C H, Golden M A, et al. Effects of nonmagnetic interparticle forces on magnetorheological fluids[J]. J Phys: Condensed Matter,2010,22(32):324101.
65 Li C H, Zhang Y L.Particles sedimentation in non-Newtonian fluid[J]. J Daqing Pet Inst,1995,19(1):6(in Chinese).
李彩虹, 张玉亮. 颗粒在非牛顿液体中的沉降[J]. 大庆石油学院学报,1995,19(1):6.
66 Guan X, Dong X, Ou J. Magnetostrictive effect of magnetorheological elastomer[J]. J Magn Magn Mater,2008,320(3):158.
67 Stepanov G V, Borin D Y, Raikher Y L, et al. Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers[J]. J Phys: Condensed Matter,2008,20(20):204121.
68 Zhou G Y, Jiang Z Y. Deformation in magnetorheological elastomer and elastomer-ferromagnet composite driven by a magnetic field[J]. Smart Mater Struct,2004,13(2):309.
69 Galipeau E, Rudykh S, Castañeda P P. Magnetoactive elastomers with periodic and random microstructures[J]. Int J Solid Struct,2014,51(18):3012.
70 Danas K, Kankanala S V, Triantafyllidis N. Experiments and mo-deling of iron-particle-filled magnetorheological elastomers[J]. J Mech Phys Solid,2012,60(1):120.
71 Ginder J M, Clark S M, Schlotter W F, et al. Magnetostrictive phenomena in magnetorheological elastomers[J]. Int J Mod Phys B,2002,16(17n18):2412.
72 Coquelle E, Bossis G. Magnetostriction and piezoresistivity in elastomers filled with magnetic particles[J]. J Adv Sci,2005,17(1-2):132.
73 Zubarev A. Magnetodeformation of ferrogels and ferroelastomers. Effect of microstructure of the particles’ spatial disposition[J]. Physica A: Stat Mech Appl,2013,392(20):4824.
74 Ivaneyko D, Toshchevikov V, Borin D, et al. Mechanical properties of magneto-sensitive elastomers in a homogeneous magnetic field: Theory and experiment[J].Macromol Symp,2014,338(1):96.
75 Pössinger T, Bolzmacher C, Bodelot L, et al. Influence of interfacial adhesion on the mechanical response of magneto-rheological elastomers at high strain[J]. Microsyst Technol,2014,20(4-5):803.
76 Bica I. Influence of the magnetic field on the electric conductivity of magnetorheological elastomers[J]. J Ind Eng Chem,2010,16(3):359.
77 Ju B, Tang R, Zhang D, et al. Temperature-dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field[J]. J Magn Magn Mater,2015,374:283. |
|
|
|