REAEARCH PAPER |
|
|
|
|
|
Microstructure and Mechanical Properties of Ti40 Burn Resistant Titanium Alloy Joints by Electron Beam Welding |
JIANG Chang1, HUANG Chunping1,2, XIA Chun1, KE Liming1
|
1 National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University, Nanchang 330063; 2 State Key Laboratory of Solidification Processing,Northwestern Polytechnical University, Xi’an 710072 |
|
|
Abstract The Ti40 thick and Ti40 burn resistant titanium alloy in 2 mm was welded by electron beam with different welding parameter. Microstructure and mechanical properties of Ti40 burn resistant titanium alloy joints were studied by metallographic analysis, electron probe microanalysis, room-temperature tensile test and micro-hardness test. The results showed that β columnar crystal with intragranular slice layer structure and a few equiaxed β grain were distributed in the weld seam. Additionally, grain size of weld seam became finer from fusion line to the seam center and the heat affected zone is not distinct. Specifically, micro defects were easy to appear in the joints, such as pores and cracks, which could be effectively controlled by straight scanning waveform, and it would lead to the improvement of joint strength. The tensile strength of Ti40 burn resistant titanium alloy with straight scanning waveform EBW could reach at 917 MPa and the fracture was characterized with brittle and ductile fracture. The maximum hardness of the weld zone was 376HV which was higher than the base metal.
|
Published: 25 August 2017
Online: 2018-05-07
|
|
|
|
1 Shu Ying, Huang Zhanghong, Peng Wenwen, et al. High temperature tensile mechanical properties and fracture behavior of as-cast Ti40 burn resistant titanium alloy[J]. Mater Rev:Res,2014,28(10):84(in Chinese). 舒滢, 黄张洪, 彭雯雯,等. 铸态Ti40阻燃钛合金高温拉伸力学性能及断裂行为研究[J]. 材料导报:研究篇,2014,28(10):84. 2 Zhao Yongqing, Zhou Lian, Deng Ju. Microstructures after high temperature deformation of β Ti40 burn resistant titanium alloy as-casting[J]. Mater Mech Eng,2000,24(1):14(in Chinese). 赵永庆, 周廉, 邓炬. β型Ti40阻燃钛合金铸态组织高温变形的微观组织[J]. 机械工程材料,2000,24(1):14. 3 Zhao Yongqing, et al. The second phases and their effects on pro-perties in Ti40 burn resistant titanium alloy thermally exposed for long time[J]. Rare Met Mater Eng,2002,31(2):84(in Chinese). 赵永庆, 等. β型Ti40阻燃钛合金高温长期作用的第二相及其对性能的影响[J]. 稀有金属材料与工程,2002,31(2):84. 4 Xin Shewei, Zhao Yongqing, Zeng Weidong, et al. Effect of thermal exposure eat 550 ℃ on mechanical properties of Ti40 burn resistant titanium alloy[J]. Heat Treat Met,2007,32(9):55(in Chinese). 辛社伟, 赵永庆, 曾卫东,等. 550 ℃热暴露对Ti40阻燃钛合金力学性能的影响[J]. 金属热处理,2007,32(9):55. 5 Xin Shewei, Zhao Yongqing, Zeng Weidong, et al. Analysis and discussion of mechanical properties and microstructure developments for Ti40 alloy thermal exposed at 550 ℃[J]. Rare Met Mater Eng,2008,37(3):423(in Chinese). 辛社伟, 赵永庆, 曾卫东,等. Ti40合金550 ℃热暴露组织和性能演化规律的分析与讨论[J]. 稀有金属材料与工程,2008,37(3):423. 6 Zhao Yongqing, Xin Shewei, Wu Huan, et al. Rare metal materials and engineering, effect of heat treatment on thermal stability of Ti40 alloy[J]. Rare Met Mater Eng,2008,37(4):660(in Chinese). 赵永庆, 辛社伟, 吴欢,等. 热处理对Ti40阻燃钛合金热稳定性能的影响[J]. 稀有金属材料与工程,2008,37(4):660. 7 Xia Shewei,Zhao Yongqing,Zeng Weiding.Heat treatment of Ti40 burn resistant titanium alloy[J]. Heat Treat Met,2008,33(5):68(in Chinese). 辛社伟, 赵永庆, 曾卫东. Ti40阻燃钛合金热处理的研究[J]. 金属热处理,2008,33(5):68. 8 Lai Yunjin, Zhang Pingxiang, Xin Shewei, et al. Research progress on engineered technology of burn-resistant titanium alloys in China[J]. Rare Met Mater Eng,2015(8):2067(in Chinese). 赖运金, 张平祥, 辛社伟,等. 国内阻燃钛合金工程化技术研究进展[J]. 稀有金属材料与工程,2015(8):2067. 9 牛济泰,孟令辉,张杰,等. 航空航天材料的焊接与胶接[M]. 北京:国防工业出版社,2012. 10 Hu Jianjun,Zou Yi,Hou Tianfeng. Application analysis of gear surface modification with large area low energy electron beam[J]. J Chongqing University of Technology: Natural Science,2014(7):35(in Chinese). 胡建军, 邹毅, 侯天凤. 大面积低能电子束对齿轮表面改性的应用分析[J]. 重庆理工大学学报:自然科学版,2014(7):35. 11 Chen Yuanfang,Ye Wei,Mao Rongshan, et al. Fraction and wear effect of Ni200 with high current pulsed electron beam[J]. J Chongqing University of Technology: Natural Science,2013,27(5):26(in Chinese). 陈元芳, 叶伟, 茆荣山,等. 强流脉冲电子束处理对Ni200摩擦磨损性能的影响[J]. 重庆理工大学学报:自然科学版,2013,27(5):26. 12 赵永庆,洪权,葛鹏,等. 钛及钛合金金相图谱[M].长沙:中南大学出版社,2011:99. 13 Huang Jianglin, Warnken N, Gebelin J C . On the mechanism of porosity formation during welding of titanium alloys[J]. Acta Mater,2012,60:3215. 14 Mohandas T, Banerjee D. Fusion zone microstructure and porosity in electron beam welds of an α+β titanium alloy[J]. Metall Mater Trans A,1999,30:789. 15 Gong Ping. Research on the factors influenced electron beam weld shape for TC4 titanium alloy[D]. Dalian: Dalian Jiaotong University,2007(in Chinese). 宫平. TC4钛合金电子束焊接工艺参数对焊缝形状的影响[D]. 大连:大连交通大学,2007. 16 Zhao Yongqing, Qu Henglei, Zhu Kangying, et al. The second phases in a burn resistant alloy-Ti40[J]. Rare Met Mater Eng,2001,30(6):413(in Chinese). 赵永庆, 曲恒磊, 朱康英, 等. Ti40阻燃钛合金中的第二相[J]. 稀有金属材料与工程,2001,30(6):413. 17 Xin Shewei, Zhao Yongqing, Zeng Weidong,et al. Mechanism of V and Cr on mechanical properties of Ti40 burn resistant titanium alloy[J]. Chin J Nonferr Met,2008,18(7):1216(in Chinese). 辛社伟, 赵永庆, 曾卫东, 等.钒和铬对Ti40阻燃钛合金力学性能的影响机制[J].中国有色金属学报,2008,18(7):1216. |
|
|
|