POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Construction Method and Application of Aptamer Biosensor Based on Tetrahedral DNA |
LIU Zhiwei, TONG Zhaoyang*, DU Bin, WANG Jiang, LIU Shuai
|
State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China |
|
|
Abstract The aptamer is a single-stranded DNA/RNA molecule, which has the advantages of easy and fast to synthesize, high stability, high specificity, wide range of target molecules and easy modification, etc. It has a good application prospect in biosensing. How to achieve the high activity and orderly immobilization of aptamers on the sensing interface is still a big problem for aptamer biosensors. Tetrahedral DNA is a three-dimensional DNA nanostructure composed of four single stranded DNA, which can improve the ability of aptamers at the sensing interface to recognize target molecules. Due to the specific A-T and G-C complementary pairing rules between DNA bases, the size of tetrahedral DNA three-dimensional nanostructures and the distance between adjacent DNA probe chains can be accurately controlled by adjusting the DNA strand length. Three dimensional nanostructures based on tetrahedral DNA are expected to solve the problem of high activity and orderly immobilization of aptamers at the sensing interface. In this paper, the structure and immobilization of tetrahedral DNA, the construction method and application of tetrahedral DNA aptamer biosensor are introduced. The problems faced by tetrahedral DNA aptamer biosensor are analyzed and its prospect is prospected, so as to provide reference for the construction of highly sensitive tetrahedral DNA aptamer biosensor.
|
Published:
Online: 2023-01-03
|
|
Fund:Foundation of State Key Laboratory of NBC Protection for Civilian (SKLNBC2018-03). |
|
|
1 Yang Y X, Tang Y, Wang C X, et al. Analytica Chimica Acta, 2021, 1179, 338837. 2 Wang Y, Rao D P, Wu X P, et al. Microchemical Journal, 2021, 160, 105644. 3 Chuesiang P, Ryu V, Siripatrawan U, et al. LWT-Food Science and Technology, 2021, 150, 111937. 4 Yi K X, Wang Y T, Shi K Q, et al. Biosensors and Bioelectronics, 2021, 190, 113404. 5 Li L, Zhao Y L, Yan X C, et al. Sensors and Actuators B: Chemical, 2021, 344, 130320. 6 Xie M J, Zhao F G, Zhang Y P, et al. Food Control, 2022, 131, 108399. 7 Liu J J, Cui D X, Jiang Y, et al. International Journal of Biological Macromolecules, 2021, 166, 884. 8 Nomani A, Li G, Yousefi S, et al. Journal of Controlled Release, 2021, 337, 132. 9 Liu S. Study on biotoxin detection by electrochemiluminescence sensor based on screen printed electrode. Master's Thesis, Academy of Military Sciences, 2018(in Chinese). 刘帅. 基于丝网印刷电极电化学发光传感器毒素检测方法研究. 硕士学位论文, 军事科学院, 2018. 10 Chen M J, Yang H L, Si Y M, et al. Food Chemistry, 2021, 355, 129656. 11 Zhao W Y, Ma Y, Ye J S. Journal of Electroanalytical Chemistry, 2021, 888, 115215. 12 Zhang Y, Wang H Y, He X W, et al. Journal of Hazardous Materials, 2021, 412, 125249. 13 Liu Y, Su Z P, Wang J, et al. Microchemical Journal, 2021, 170, 106696. 14 Tan F, Zhai M Y, Meng X J, et al. Biosensors and Bioelectronics, 2021, 184, 113220. 15 Rypar T, Adam V, Vaculovicova M, et al. Sensors and Actuators B: Chemical, 2021, 341, 129999. 16 Pei H, Lu N, Wen Y L, et al. Advancecl Materials, 2010, 22(42), 4754. 17 Pei H, Zuo X L, Pan D, et al. NPG Asia Materials, 2013, 5, e51. 18 Ye D K, Zuo X L, Fan C H. Progress in Chemistry, 2017, 29(1), 36 (in Chinese). 叶德楷, 左小磊, 樊春海. 化学进展, 2017, 29(1), 36. 19 Lin M H. Designed tetrahedral DNA nanostructureand its applications in biosensor. Ph. D. Thesis, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2015(in Chinese). 林美华. 四面体DNA纳米结构探针设计及其在生物传感中的应用. 博士学位论文, 中国科学院上海应用物理研究所, 2015. 20 Zheng H, Lang Y G, Yu J, et al. Colloids and Surfaces B: Biointerfaces, 2019, 178, 80. 21 Zhu F L, Bian X J, Tian R, et al. Chinese Journal of Analytical Chemistry, 2020, 48(4), 473(in Chinese). 朱福琳, 卞晓军, 田润, 等. 分析化学, 2020, 48(4), 473. 22 Liu D J, Perdue R, Sun L, et al. Langmuir, 2004, 20, 5905. 23 Fan J H, Liu Y J, Xu E S, et al. Analytica Chimica Acta, 2016, 946, 48. 24 Wei M, Zhang W Y. Sensors & Actuators B: Chemical, 2018, 276, 1. 25 Wen Y L, Pei H, Wan Y, et al. Analytical Chemistry, 2011, 83, 7418. 26 Hong C Y, Zhang X X, Dai C Y, et al. Analytica Chimica Acta, 2020, 1120, 50. 27 He B S, Lu X. Analytica Chimica Acta, 2020, 1138, 123. 28 Huang K J, Liu Y J, Zhai Q F. Journal of Materials Chemistry B, 2015, 3, 8180. 29 Chen Y X, Huang K J, He L L, et al. Biosensors and Bioelectronics, 2018, 100, 274. 30 Sun D P, Lu J, Luo Z F, et al. Biosensors and Bioelectronics, 2018, 120, 8. 31 Guo Y M, Yang F Z, Yao Y, et al. Journal of Hazardous Materials, 2021, 401, 123794. 32 Xie F T, Zhao X L, Chi K N, et al. Analytica Chimica Acta, 2020, 1135, 123. 33 Mi X N, Li H, Tan R, et al. Biosensors and Bioelectronics, 2021, 192, 113482. 34 Ou D, Sun D P, Liang Z X, et al. Sensors & Actuators: B. Chemical, 2019, 285, 398. |
|
|
|