NEW MATERIAL AND TECHNOLOGY |
|
|
|
|
|
Research Progress on TaAs Single Crystal:The Weyl Semimetal |
LI Yumeng, TIAN Tian, XU Jiayue
|
Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418; |
|
|
Abstract Weyl semimetal is a kind of materials whose low-energy quasiparticles excitations are Weyl fermions when two spin non-degenerate energy bands pass near the Fermi level in the three-dimensional (3D) momentum space. Weyl fermions are the massless solution to Dirac equation and can be regarded as two overlapped particles with opposite chirality in the three-dimensional momentum space. TaAs single crystal is a nonmagnetic Weyl semimetal in which the Weyl fermions can be observed directly and lead to several exotic physical properties, such as Fermi arcs, negative magneto-resistance, and quantum anomalous Hall effect, etc. It shows potential applications in the fields of new electronic devices and topological quantum computations. In this paper, we introduce the basic theory and significant experiments on Weyl semimetallic TaAs single crystal, with an emphasis on the technological issues related to the crystal growth of TaAs and the advantages and disadvantages of the chemical vapor transport method (CVT).
|
Published: 10 August 2017
Online: 2018-05-04
|
|
|
|
1 Weyl H. Elektron und gravitation. I[J]. Zeitschrift für Physik A Hadrons and Nuclei,1929,56(5):330. 2 Brown L M. Idea of the neutrino[J]. Phys Today (United States),1978,31(9):23. 3 Wan X, Turner A M, Vishwanath A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates[J].Phys Rev B,2011,83(20):205101. 4 Balents L. Viewpoint: Weyl electrons kiss[J]. Physics,2011,83(4):36. 5 Xu G, Weng H, Wang Z, et al. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4[J]. Phys Rev Lett,2011,107(18):186806. 6 Turner A M, Vishwanath A, Head C O. Beyond band insulators: Topology of semimetals and interacting phases[J]. Topological Insulators,2013,6:293. 7 Vafek O, Vishwanath A. Dirac fermions in solids: From high-Tc cuprates and graphene to topological insulators and Weyl semimetals[J]. Annual Rev Condensed Matter Phys,2014,5(1):83. 8 Wehling T O, Black-Schaffer A M, Balatsky A V. Dirac materials[J]. Adv Phys,2014,63(1):1. 9 Huang X, Zhao L, Long Y, et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs[J]. Phys Rev X,2015,5(3):031023. 10 Zhang C, Yuan Z, Xu S, et al. Tantalum monoarsenide: An exotic compensated semimetal[J]. Phys Rev B,2017,95:085202. 11 Yang X, Li Y, Wang Z, et al. Observation of negative magnetoresistance and nontrivial π Berrys phase in 3D Weyl semi-metal NbAs[J]. arXiv:1506.02283,2015. 12 Shekhar C, Arnold F, Wu S C, et al. Large and unsaturated negative magnetoresistance induced by the chiral anomaly in the Weyl semimetal TaP[J]. http://arxiv. org/abs/1506.06577,2015,21. 13 Zhang C, Xu S Y, Belopolski I, et al. Observation of the Adler-Bell-Jackiw chiral anomaly in a Weyl semimetal[J]. http://arxiv. org/abs/1503.02630,2015. 14 Yang X, Liu Y, Wang Z, et al. Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs[J]. arXiv:1506.03190, 2015. 15 Wang Z, Zheng Y, Shen Z, et al. Helicity-protected ultrahigh mo-bility Weyl fermions in NbP[J]. Phys Rev B,2016,93(12):121112. 16 Ghimire N J, Luo Y, et al. Magnetotransport of single crystalline NbAs[J]. J Phys: Condensed Matter,2015,27(15):152201. 17 Parameswaran S A, Grover T, Abanin D A, et al. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals[J]. Phys Rev X,2014,4(3):031035. 18 Potter A C, Kimchi I, Vishwanath A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals[J]. Nat Commun,2014,5:5161. 19 Fukushima K, Kharzeev D E, Warringa H J. Chiral magnetic effect[J]. Phys Rev D,2008,78(7):074033. 20 Qian T. Weyl Fermions was experimentally found[J]. Chin Sci Bull,2015(27):2677(in Chinese). 钱天. 实验发现外尔费米子[J]. 科学通报, 2015(27):2677. 21 Fang Z, et al. The anomalous Hall effect and magnetic monopoles in momentum space[J]. Science,2003, 302(5642):92. 22 Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings Royal Soc A,1984,392(1802):45. 23 Weng H, Yu R, Hu X, et al. Quantum anomalous Hall effect and related topological electronic states[J]. Adv Phys,2015,64(3):227. 24 Burkov A A, Balents L. Weyl semimetal in a topological insulator multilayer[J]. Phys Rev Lett,2011,107(12):127205. 25 Bulmash D, Liu C X, Qi X L. Prediction of a Weyl semimetal in Hg1-x-yCdxMnyTe[J]. Phys Rev B,2014,89(8):081106. 26 Liu J, Vanderbilt D. Weyl semimetals from noncentrosymmetric topological insulators[J]. Phys Rev B,2014,90(15):155316. 27 Singh B, Sharma A, Lin H, et al. Topological electronic structure and Weyl semimetal in the TlBiSe2 class of semiconductors[J]. Phys Rev B, 2012,86(11):115208. 28 Hirayama M, Okugawa R, Ishibashi S, et al. Weyl node and spin texture in trigonal tellurium and selenium[J]. Phys Rev Lett,2015,114(20):206401. 29 Kim H J, Kim K S, Wang J F, et al. Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena[J]. Phys Rev Lett,2013,111(24):246603. 30 Li Q, Zhang C, et al. Chiral magnetic effect in ZrTe5[J]. Nat Phys,2016,12:550. 31 Wang Z, et al. Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb)[J]. Phys Rev B,2012,85:195320. 32 Wang Z, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2[J]. Phys Rev B,2013,88(12):125427. 33 Liu Z K, Zhou B, et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi[J]. Science,2014,343(6173):864. 34 Neupane M, Xu S Y, Sankar R, et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2[J]. Nat Commun,2014,5:3786. 35 Liu Z K, Jiang J, Zhou B, et al. A stable three-dimensional topolo-gical Dirac semimetal Cd3As2[J]. Nat Mater,2014,13(7):677. 36 Jeon S, Zhou B B, Gyenis A, et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2[J]. Nat Mater,2014,13(9):851. 37 Xu S Y, Liu C, Kushwaha S K, et al. Observation of Fermi arc surface states in a topological metal[J]. Science,2015,347(6219):294. 38 Weng H, Fang C, Fang Z, et al. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides[J]. Phys Rev X,2015,5(1):011029. 39 Huang S M, Xu S Y, Belopolski I, et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class[J]. Nat Commun,2015,6:7373. 40 Xu S Y, Belopolski I, et al. Discovery of a Weyl Fermion semimetal and topological Fermi arcs[J]. Science,2015,349(6248):613. 41 Lv B Q, Weng H M, Fu B B, et al. Experimental discovery of Weyl semimetal TaAs[J]. Phys Rev X,2015,5(3):031013. 42 Yang L X, Liu Z K, Sun Y, et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs[J]. Nat Phys,2015,11(9):728. 43 Xu S Y, Alidoust N, et al. Discovery of a Weyl Ffermion state with Fermi arcs in niobium arsenide[J]. Nat Phys 2015,11:748. 44 Xu S Y, Belopolski I, et al. Experimental discovery of a topological Weyl semimetal state in TaP[J]. Sci Adv,2015,1(10): e1501092. 45 Lv B Q, Xu N, Weng H M, et al. Observation of Weyl nodes in TaAs[J]. Nat Phys, 2015,11:724. 46 Shi M, Xu N, Weng H M, et al. Observation of Weyl nodes and Fermi arcs in TaP[J]. Physics,2015,11(9):1. 47 Boller H, Parthé E. The transposition structure of NbAs and of si-milar monophosphides and arsenides of niobium and tantalum[J]. Acta Crystallographica,1963,16(11):1095. 48 Saini G S, Calvert L D, Taylor J B. Preparation and characterization of crystals of MX-and MX2-type arsenides of niobium and tantalum[J]. Canadian J Chem,1964,42(3):630. 49 Furuseth S, Selte K, Kjekshus A, et al. On the arsenides and antimonides of tantalum[J]. Acta Chem Scandinavica,1965,19(95):42. 50 Murray J J, Taylor J B, Calvert L D, et al. Phase relationships and thermodynamics of refractory metal pnictides: The metal-rich tantalum arsenides[J]. J Less Common Met,1976,46(2):311. 51 Willerström J O. Stacking disorder in NbP, TaP, NbAs and TaAs[J]. J Less Common Metals,1984,99(2):273. 52 Lv B Q, Muff S, Qian T, et al. Observation of Fermi-arc spin texture in TaAs[J]. Phys Rev Lett,2015,115(21):217601. 53 Besara T, Rhodes D, Chen K W, et al. Non-stoichiometry and defects in the Weyl semimetals TaAs, TaP, NbP, and NbAs[J]. arXiv:1511.03221, 2015. 54 Li Z, Chen H, Jin S, et al. Weyl semimetal TaAs: Crystal growth, morphology, and thermodynamics[J]. Cryst Growth Des,2016,16(3):1172. 55 Wan X G, Wang Q H. Weyl fermion, a mysterious particle in "lattice universe″[J]. Prog Phys,2015,35(5):189(in Chinese). 万贤纲, 王强华. “晶体宇宙” 中的神秘粒子: 外尔费米子[J]. 物理学进展,2015,35(5):189. |
[1] |
WANG Yuanyuan, ZHANG Lu, CHENG Xixi, QIAN Qi, XU Huan, XU Hua, YANG Xuezhou, YANG Bobo, ZOU Jun. Research Progress in Crystal Growth, Physical Properties and Application of Cubic Boron Arsenide[J]. Materials Reports, 2024, 38(17): 22110207-10. |
|
|
|
|