REVIEW PAPER |
|
|
|
|
|
Research Status of Comprehensive Strengthening Methods for Heavy-duty Gear of Armored Vehicles |
XING Zhuang, XING Zhiguo, WANG Haidou, LIU Kejing
|
National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 |
|
|
Abstract Maneuverability is the key performance indicator of the armored vehicle, which expects much more on the transmission system. The heavy-duty gear served in the complicated situation is the important part of the transmission system of the armored vehicle. It is always a worldwide popular subject that how to strengthen it effectively. The selection and optimization of material and development of new material are the basics of the gear strengthening. The proper thermal treatment can improve the comprehensive performance of the gear and the fatigue life can be prolonged combining with the effective surface strengthening technology. From the above-mentioned three aspects, this report analyzes the crucial strengthening phase in the gear production process, discusses the new method with promising applications, and gives suggestions on the development of the heavy-duty gear.
|
Published: 10 June 2017
Online: 2018-05-04
|
|
|
|
1 Herring D H. Gear heat treatment: The influence of materials and geometry[J]. Gear Technol,2004,21(2):35
2 Gao M, Bai S, Wang H, et al. Study on heavy-duty mining machi-nery gear materials[J].Hot Working Technol,2012,41(20):55.
3 Kulkarni N, Gautham B P, Zagade P, et al. Exploring the geometry and material space in gear design[J]. Eng Optim, 2015,47(4):561.
4 Chatterjee P, Chakraborty S. Material selection using preferential ranking methods[J]. Mater Des,2012,35:384.
5 Li X, Olofsson U. FZG gear efficiency and pin-on-disc frictional study of sintered and wrought steel gear materials[J]. Tribol Lett,2015,60(1):1.
6 Tamboli K, Patel S, George P M, et al. Optimal design of a heavy duty helical gear pair using particle swarm optimization technique[J]. Procedia Technol,2014,14:513.
7 Yang L. Strength and stiffness optimization of heavy-duty gear[J].Adv Mater Res,2013,712:1701.
8 Milani A S, Shanian A. Gear material selection with uncertain and incomplete data. Material performance indices and decision aid model[J]. Int J Mech Mater Des,2006,3(3):209.
9 Shimamura Y, Narita K, Ishii H, et al. Fatigue properties of carburized alloy steel in very high cycle regime under torsional loading[J]. Int J Fatigue,2014,60:57.
10 Walters J, Wu W T, Arvind A, et al. Recent development of process simulation for industrial applications[J]. J Mater Process Technol,2000,98(2):205.
11 Wei W N,Han L H,Wang J G,et al. High temperature mechanical properties of 10Cr3Mo and N80 steels[J]. Heat Treat Met,2016,41(2):23(in Chinese).
魏文澜, 韩礼红, 王建国, 等. 10Cr3Mo 钢与 N80 钢的高温力学性能[J]. 金属热处理,2016,41(2):23.
12 Yu Y X, He B L, Shao E Y. Research on contact fatigue properties of some materials used for heavy load gear[J].Adv Mater Res,2010,139:360.
13 Gao C X, Wang C, Ren X H. Research on mining machinery gear materials[J]. Adv Mater Res,2012,503:680.
14 李志义, 李晓澎. 齿轮气体渗碳淬火件中的变形问题[C]// 先进节能热处理技术与装备研讨会. 苏州,2012.
15 项程云. 合金结构钢[J]. 北京: 冶金工业出版社,1999.
16 Yang Y Y. Study on microstructure and properties of gear steel after carburizing heat treatment[J]. Foundry Technol,2014,35(6):1213(in Chinese).
杨英芸. 齿轮钢渗碳热处理组织与性能研究[J]. 铸造技术,2014,35(6):1213.
17 Arifin A, Sulong A B, Muhamad N, et al. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review[J]. Mater Des,2014,55:165.
18 Gonzalez, Carlos. Gears look to the future for materials[J]. Machine Des,2015,87(12):26.
19 Sardar J, Bandopadhya D. Development and fabrication of cement reinforced polypropylene composite material spur gear[J]. J Polym Eng,2014,34(8):775.
20 Lehmann & Voss & Co develops new material for gear wheels[EB/OL]. Reinforced Plastics (2015-01-21).http:∥www.materialstoday.com.
21 Chen H, Zhou X Y. Review and progress of heat treatment process for automobile gear[J]. Mater Rev:Rev,2010,24(4):93(in Chinese).
陈晖, 周细应. 汽车齿轮热处理工艺的研究进展[J]. 材料导报:综述篇,2010,24(4):93.
22 Wu W J. Development situation of technology and equipment of gear heat treatment in China[J]. Hot Work Technol, 2013,42(10):35(in Chinese).
吴文健. 我国齿轮热处理技术发展现状[J]. 热加工工艺,2013,42(10):35.
23 Borisov A A. Heat treatment of heavy-loaded gears[J]. Met Sci Heat Treat,1965,7(4):264.
24 Kula P, Dybowski K, Wolowiec E, et al. “Boost-diffusion” vacuum carburising—Process optimisation[J]. Vacuum, 2014, 99:175.
25 Kim D W, Cho H H, Lee W B, et al. A finite element simulation for carburizing heat treatment of automotive gear ring incorporating transformation plasticity[J]. Mater Des,2016,99:243.
26 Wu J, Liu R, Xue W, et al. Analyses of quenching process during turn-off of plasma electrolytic carburizing on carbon steel[J]. Appl Surf Sci,2014,316:102.
27 Gorockiewicz R. The kinetics of low-pressure carburizing of alloy steels[J]. Vacuum,2011,86(4):448.
28 Lee Y L R. Effect of initial microstructure on heat treat growth and distortion during atmosphere gas carburizing of ring gears[C]//ASM heat treat Society 28th conference and Exposition. Michigan,2015.
29 Dybowski K, Sawicki J, Kula P, et al. The effect of the quenching method on the deformations size of gear wheels after vacuum carburizing[J]. Archives Metall Mater,2016,61(2):1057.
30 Pang Z, Yu S, Xu J. Study of effect of quenching deformation influen-ced by 17CrNiMo6 gear shaft of carburization[J]. Phys Procedia,2013,50:103.
31 Luo C Z, Yao Y J, Shi J Y. Effects of quenching media on microstructure and mechanical properties of 17CrNiMo6 steel for carburized heavy duty gear[J]. Heat Treat Met,2013,38(5):108(in Chinese).
罗长增, 姚亚俊, 石巨岩. 不同淬火介质对 17CrNiMo6 重载齿轮渗碳钢组织与性能的影响[J]. 金属热处理,2013, 38(5):108.
32 Han R D, Hu K H, Rolfe B, et al. A research on selective carburization process of low carbon steel[C]//Advanced high strength steel and press hardening. Proceedings of the 2nd international conference (ICHSU2015).2016:704.
33 Yan S, Zhang Z, Liu J, et al. Effects of ultrasonic quenching nitriding compound treatment on quenching cracks of 45 steel small mo-dule gear [J]. Hot Work Technol,2013,4:54.
34 杜树芳. 渗氮齿轮代替渗碳齿轮研究的进展[C]// 先进节能热处理技术与装备研讨会. 长沙,2014.
35 Goman A M, Kukareko V A. Contact endurance of gearing teeth subjected to ion-beam nitriding[J]. J Machinery Manuf Reliab,2014,43(1):69.
36 Cˇelko P, Kuffová M, Shearman A. Fatigue resistance of low-alloy steel post long-term plasma-nitriding[J]. Trans IMF,2016, 94(2):86.
37 Liu R L, Qiao Y J, Yan M F, et al. Layer growth kinetics and wear resistance of martensitic precipitation hardening stainless steel plasma nitrocarburized at 460 ℃ with rare earth addition[J]. Met Mater Int,2013,19(5):1151.
38 Shen D J, Wang Y L, Nash P, et al. A novel method of surface modification for steel by plasma electrolysis carbonitriding[J]. Mater Sci Eng A,2007,458(1):240.
39 Stewart B. 齿轮的表面化学热处理[J]. 金属加工 (热加工),2015(13):003.
40 Watanabe Y. Development of high strength steel designed for carbonitriding with high nitrogen content to be used for automatic transmission gears[J]. Trans Mater Heat Treat,2004,25(5):382.
41 袁建霞, 尹雪峰. 碳氮共渗 “三段控制” 工艺[J]. 国外金属热处理,2005,26(1):34.
42 Fang S Q, Chen M T,Qu J J, et al. The current application situation of nitriding technology and Nitriding steel[J]. Mater Rev,2014,28(S1):392(in Chinese).
房双强, 陈茂涛, 曲江江, 等. 渗氮技术与渗氮钢应用综述[J]. 材料导报,2014,28(专辑23):392.
43 Zhang Y, Du S, Zhao W, et al. Experimental study on the influence of vacuum carbonitriding process for 20Cr2Ni4A steel[C]//EPD Congress 2014. John Wiley & Sons, Inc,2014:361.
44 Lashnev M M, Smirnov A E, Semenov M Y. Use of vacuum carbo-nitriding for raising the seizure resistance of gears from steel VKS-10[J]. Met Sci Heat Treat,2013,55(1-2):29.
45 Biasutti F, Krause C, Lupi S. Induction hardening of complex geo-metry and geared parts[J]. Heat Process,2012,3:60
46 Kohli A, Singh H. Optimization of procesing parameters in induction hardening using response surface methodology[J]. Sadhana,2011,36(2):141.
47 Barglik J, Smalcerz A, Przylucki R, et al. 3D modeling of induction hardening of gear wheels[J]. J Comput Appl Math,2014, 270:231.
48 Zhang G Y, Xi X Q, Zhang W Y. Optimization of induction quenc-hing process parameters and prediction of microstructure and hardness distribution for S45C steel shaft[J]. Trans Mater Heat Treat,2013,34(6):174(in Chinese).
张根元, 奚小青, 张维颖. 感应淬火工艺参数优化和组织硬度分布预测[J]. 材料热处理学报,2013,34(6):174.
49 Wang Z M.Double frequency induction hardening technology for gear[J].Heat Treat Met,2012,37(10):122(in Chinese).
王志明. 齿轮双频感应淬火技术[J]. 金属热处理,2012,37(10):122.
50 张珀. 感应热处理技术专题 (下): 同步双频感应淬火技术——SDF[J]. 金属加工(热加工),2014(5):3.
51 Jin X Y, Song G H, Zheng W G. Comparative study between the single frequency and synchronous double frequency induction harde-ning technique for gear[J]. Machine Tool Hydraulics,2015,43(12):65(in Chinese).
金星烨, 宋广浩, 郑卫刚. 齿轮单频及同步双频感应淬火工艺比较研究[J]. 机床与液压,2015,43(12):65.
52 Wu R, Kan C H. Numerical control technology in the design of induction hardening machine tool[J]. Develop Innov Machinery Electrical Prod,2008,21(6):185(in Chinese).
吴锐, 阚长华. 数控技术在设计感应淬火机床中的应用[J]. 机电产品开发与创新,2008,21(6):185.
53 Константинов В М, Михлюк А И, Вегера И И, et al. Многофункц- иональная научно-исследовательская установка индукционного нагрева сталей и сплавов[J].2015.
54 Михлюк А И, Вегера И И. A new volume-surface hardening technology adaptable to automobile heavily loaded gears[J]. Heat Treat, 2014, 29(5): 32. (in Chinese).
Михлюк А И, Вегера И И. 汽车重载齿轮的体积表面淬火新工艺[J]. 热处理, 2014, 29(5):32.
55 Jones K T, Newsome M R, Carter M D. Gas carburizing vs. contour induction hardening in bevel gears[J]. Gear Solutions, 2010,8(82):38.
56 Caramidaru V D, Vela I. Heat treatments and materials used in the manufacturing of the gear wheels[J]. Analele Universitatii Eftimie Murgu resita Fascicula De Inginerie,2010,17(2):65.
57 Shi R N, Zhang R L, Wang T,et al. Experimental study of contact strength for induction hardening gear[J]. Mech Transmission,2014,38(11):18(in Chinese).
史若男, 张瑞亮, 王铁, 等. 感应淬火齿轮接触疲劳强度试验研究[J]. 机械传动,2014,38(11):18.
58 Tian Y Y, Ou J, Qin L, et al. Research status on gear surface strengthening technology[J]. Hot Work Technol,2011, 40(24):211(in Chinese).
田亚媛, 瞿皎, 秦亮, 等. 齿轮表面强化技术研究现状[J]. 热加工工艺,2011,40(24):211.
59 Lv Y, Lei L, Sun L. Influence of different combined severe shot peening and laser surface melting treatments on the fatigue performance of 20CrMnTi steel gear[J]. Mater Sci Eng A,2016,658:77.
60 Chen Y. Theoretical and experimental researches of 20CrMnMo gear root residual stresses[D].Chongqing: Chongqing University,2013(in Chinese).
陈毅. 20CrMnMo齿轮齿根残余应力理论及试验研究[D]. 重庆:重庆大学,2013.
61 Zhang G L, Yuan J P, Jiang C H. Finite element simulation of resi-dual stress of 18CrNiMo7-6 gear steel after shot peening[J]. Mater Mech Eng,2013,37(5):103(in Chinese).
张广良, 袁建平, 姜传海. 齿轮钢喷丸后残余应力的有限元模拟[J]. 机械工程材料,2013,37(5):103.
62 Sonntag R, Reinders J, Gibmeier J, et al. 4-Fatigue strengthening of an orthopedic Ti6Al4V alloy: What is the potential of a final shot peening process[J]. Biomater Med Tribol, DOI:10.1533/9780857092205.217.
63 Lv Y, Lei L, Sun L. Effect of shot peening on the fatigue resistance of laser surface melted 20CrMnTi steel gear[J]. Mater Sci Eng A,2015,629:8.
64 Dai R Y. Study of shot peening treatment and its characteristics on the surface of heavy duty locomotive traction gear[D]. Shanghai: Shanghai Jiaotong University,2012(in Chinese).
戴如勇. 重载机车牵引齿轮表面喷丸强化及其表征研究[D]. 上海: 上海交通大学,2012.
65 杨钟胜. 矿用汽车齿轮喷丸强化工艺的研究与应用[J]. 矿用汽车,2013(2):2.
66 Rego R R, Gomes J O, Barros A M. The influence on gear surface properties using shot peening with a bimodal media size distribution[J]. J Mater Process Technol,2013,213(12):2152.
67 Kumar H, Singh S, Kumar P. Modified shot peeningprocesses—A review[J]. Int J Eng Sci Emerging Technol,2013,5(1):12.
68 Zhu Y L, Wang Y L, Bian F L, et al. Progresses on research and application of metal ultrasonic surface enhancement technologies[J]. J Mech Eng,2014,50(20):35(in Chinese).
朱有利, 王燕礼, 边飞龙, 等. 金属材料超声表面强化技术的研究与应用进展[J]. 机械工程学报,2014,50(20):35.
69 张勤俭, 王会英, 徐文胜,等. 超声挤压强化技术的研究现状及发展前景[C]// 全国特种加工学术会议. 南京,2013:11.
70 Chen L Q, Xiang B, Ren X C, et al. Influences of surface ultrasonic rolling processing parameters on surface condition of axle steel used in high speed trains[J]. China Surf Eng,2014,27(5):96(in Chinese).
陈利钦, 项彬, 任学冲, 等. 表面超声滚压处理工艺对高速列车车轴钢表面状态的影响[J]. 中国表面工程,2014,27(5):96.
71 Cheng M, et al. Development of ultrasonic thread root rolling technology for prolonging the fatigue performance of high strength thread[J]. J Mater Process Technol,2014,214(11):2395.
72 Shukla P P, Swanson P T, Page C J. Laser shock peening and mechanical shot peening processes applicable for the surface treatment of technical grade ceramics: A review[J]. Proc Inst Mech Engineers Part B: J Eng Manuf,2014,228(5):639.
73 Wang Y L, Hui Y L, Yao C C. Research progress of gear laser quenching[J]. Surf Technol,2014(5):24(in Chinese).
王玉玲, 惠英龙, 姚翠翠. 齿轮激光淬火研究进展[J]. 表面技术, 2014(5):24.
74 Wang Y L, Xu S R, Hui Y L. Research on laser quenching process of 20CrMnMo gears by finite element method and experiment[J]. Int J Adv Manuf Technol,2016,87(9):1.
75 Hui Y L, Wang Y L, Yao C C. Heating processing of laser quen-ching on 20CrMnMo gears used in heavy-load automobiles[J].China Surf Eng,2014,27(6):89(in Chinese).
惠英龙, 王玉玲, 姚翠翠. 重载汽车 20CrMnMo 齿轮激光淬火热处理工艺[J].中国表面工程,2014,27(6):89.
76 Gao Y K, Zhong Z, Lei L M. Influence of laser peening and shot peening on fatigue properties of fGH97 superalloy[J]. Rare Met Mater Eng,2016,45(5):1230(in Chinese).
高玉魁, 仲政, 雷力明. 激光冲击强化和喷丸强化对 FGH97 高温合金疲劳性能的影响[J]. 稀有金属材料与工程,2016, 45(5):1230.
77 Lei Z, Weifeng H, Xede W, et al. Effect of laser shock processing on high cycle fatigue properties of 1Cr11Ni2W2MoV stainless steel[J]. Rare Met Mater Eng,2011,40(S4):174.
78 Raj D, Tyagi R, Chaubey S K, et al. Investigation on solid state Nd-YAG nanosecond laser assisted shock peening of miniature gears[J]. Mater Today,2015,2(4):1755.
79 Zhang Xingquan,He Guangde,Qi Xiaoli, et al. Investigation on contact fatigue strength of gear affected by laser shock processing[J]. Chin J Lasers,2010,37(12):3187(in Chinese).
张兴权, 何广德, 戚晓利, 等. 激光冲击强化对齿轮接触疲劳的影响[J]. 中国激光,2010,37(12):3187.
80 Chen Z J, Li B M, Zhang Y Y, et al. Research and progress on me-talmaterials surface strengthening in china and abroad by high intensity pulsed ion beams[J]. Machinery Des Manuf,2008(12):244(in Chinese).
陈卓君, 李柏妹, 章颖莹, 等. 强流离子束对金属表面强化的研究进展[J].机械设计与制造,2008(12):244.
81 Wilson T A, Barlow A J, Foster M L, et al. In situ ion beam sputter deposition and X-ray photoelectron spectroscopy (XPS) of multiple thin layers under computer control for combinatorial materials synthesis[J]. Surf Interface Anal,2016. |
|
|
|