Materials Reports 2021, Vol. 35 Issue (z2): 437-442 |
METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
High-pressure Hydrogen Embrittlement Evaluation Method Research Based on 4130X Material |
ZHAI Jianming, SHANG Xuexin,WANG Hankui, XU Tong, YU Haiyang, SUN Yonghui, LIU Wang
|
China Special Equipment Inspection and Research Institute, Beijing 100029, China |
|
|
Abstract Hydrogen embrittlement (HE) in metals can seriously affect the performance of high-pressure hydrogen storage and transmit system. With the application of hydrogen energy in the fields of transportation and electric power, hydrogen embrittlement and service security have been paid more and more attention. To research the evaluation of hydrogen embrittlement sensitivity of 4130X materials and the HE evaluation me-thods, the disc pressure test and the fracture mechanics test were carried out, as well as the discussion of the high-pressure hydrogen embrittlement valuation methods. The HE sensitivity 1.11 and the KIH 87.81 MPa·m1/2 of 4130X were obtained, respectively. It is also found that the intervention of hydrogen caused the fracture to appear quasi-cleavage and intergranular fracture morphology. For the HE evaluation of CrMo high-strength steel, the suggestion that A and B methods or A and C methods in ISO 11114-4 for the test method selection was bringing up based on the above research.
|
Published: 09 December 2021
|
|
Fund:This work was financially supported by the Technology Program of the State Administration for Market Regulation (2017QK184). |
About author:: Jianming Zhai, senior engineer, received his doctor degrees in July 2013 from Beijing University of Techno-logy. From July 2013 to now, worked at China Special Equipment Inspection and Research Institute (CSEI), focused on the research of the fatigue and the environmental hydrogen embrittlement of the materials. |
|
|
1 Gangloff R P, Somerday B P. Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing, Cambridge UK, 2012. 2 韩鸿硕.宇航材料工艺, 1976(4), 3. 3 San Marchi C, Somerday B P, Nibur KA. International Journal of Hydrogen Energy,2014, 39, 20434. 4 ASTM F1624-12. Standard test method for measurement of hydrogen embrittlement threshold in steel by the incremental step loading technique. ASTM international, 2012. 5 ASTM F1459-06 (Reapproved 2017), Standard test method for determination of the susceptibility of metallic materials to hydrogen gas embrittlement (HGE). ASTM international. 2017. 6 ASTM G142-98 (Reapproved 2016), Standard test method for determination of the susceptibility of metals to embrittlement in hydrogen containing environments at high pressure, high temperature, or both. ASTM international. 2016. 7 ASTM STP 543 Hydrogen embrittlement testing. ASTM international.1974. 8 ISO 11114-4: 2005. Transportable gas cylinders-compatibility of cylinder and valve materials with gas contents-part4: test methods for selecting metallic materials resistance to hydrogen embrittlement. 2005. 9 ASME VIII-3 Article kd-10 special requirements for vessels in hydrogen service. 2017. 10 NACE TM0284-2003, Evaluation of pipeline and pressure vessel steels for resistance to hydrogen-induced cracking. NACE International, Houston. 11 ANSI/CSA CHMC1-2014 Test method for evaluating material compatibi-lity in compressed hydrogen applications. US-ANSI. 12 SAE J2579 JAN2009. Technical information report for fuel systems in fuel cell and other hydrogen vehicles . SAE International. 2009. 13 GB/T 24185-2009, 逐级加力法测定钢中氢脆临界值试验方法. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2009. 14 GB/T 23606-2009, 铜氢脆检验方法. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2009. 15 GB/T 8650-2015, 管线钢和压力容器钢抗氢致开裂评定方法. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2015. 16 GB/T 34542.2-2018, 氢气储存输送系统 第2部分:金属材料与氢环境相容性试验方法. 国家市场监督管理总局, 中国国家标准化管理委员会. 2018. 17 Briottet L, Moro I, Lemoine P. International Journal of Hydrogen Energy, 2012, 37(22),17616. 18 Briottet L, Batisse R, De Dinechin G, et al. International Journal of Hydrogen Energy, 2012, 37(11), 9423. 19 Michler T, Yukhimchuk A A, Naumann J. Corrosion Science, 2008, 50, 3519. 20 Takasawa K, IkedA R, Ishikawa N, et al. International journal of hydrogen Energy, 2012, 37(3), 2669. 21 Aprea J L. International Journal of Hydrogen Energy, 2009, 34(10), 4684. 22 周德惠, 谭云.金属的环境氢脆及其实验技术, 国防工业出版社, 1998. 23 李志林, 陈涛, 曾致翚.北京化工大学学报(自然科学版), 2005, 32(05), 60. 24 合肥通用机械研究院. 发明专利, CN 104215513A, 2014. 25 西安摩尔石油工程实验室有限公司. 发明专利, CN 104330312A, 2015. 26 翟建明,徐彤,王红霞,等.中国特种设备安全, 2017, 33(12), 1. 27 翟建明,徐彤,寿比南,等.中国特种设备安全, 2017, 33(10),1. 28 李晓东,陈良奭.腐蚀科学与防护技术,1994(2), 188. 29 ISO 7539-6:2003 Corrosion of metals and alloys — Stress corrosion testing — Part 6: Preparation and use of precracked specimens for tests under constant load or constant displacement. 2003. 30 Wang H K, Xu T, Shou B N. Materials, 2017, 10, 23. 31 GB/T 15970.6: 2007 金属和合金的腐蚀 应力腐蚀试验第6部分:恒载荷或恒位移下预裂纹试样的制备和应用, 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2007. 32 Zafr A, Peral L B, Belzunce J. et al. International Journal of Pressure Vessels and Piping, 2019, 171, 34. 33 ISO 11114-4: 2017. Transportable gas cylinders-compatibility of cylinder and valve materials with gas contents-part4: test methods for selecting metallic materials resistance to hydrogen embrittlement. 2017. 34 MatsumotoT, Kubota M, Matsuoka S, et al. International Journal of Hydrogen Energy, 2017, 42, 7422. 35 Lee W J, Chia W J, Wang J L, et al. Langmuir, 2010, 26(21), 16254. 36 Li Y D, Chen S M, Liu Y B, et al. Journal of Materials Science, 2010, 45(3), 831. 37 Michler T, Boitsov I E, Malkov I L, et al.Corrosion Science, 2012, 65, 169. 38 王兆希,屈宝平,薛飞,等.核动力工程,2011(4), 14. 39 Charles Y, Gasperini M, Fagnon N, et al.Engineering Fracture Mecha-nics,2019 (218), 106580. 40 Wang M Q, Akiyama E, Tsuzaki K. Materials Science and Engineering A, 2005, 398, 37. 41 Peral LB, Zafr A, Belzunce J,et al. International Journal of Hydrogen Energy, 2019, 44, 3853. |
|
|
|