COMPUTATIONAL SIMULATION |
|
|
|
|
|
Microstructure Evolution and Grain Size Model of 5083 Aluminum Alloy During Hot Deformation |
DAI Qingsong1,2, OU Shisheng1, DENG Yunlai1,3, FU Ping2, ZHANG Jiaqi3
|
1 School of Materials Science and Engineering, Central South University, Changsha 410083; 2 Guangxi Liuzhou Yinhai Aluminum Co., Ltd., Liuzhou 545006; 3 Light Alloy Research Institute, Central South University, Changsha 410083; |
|
|
Abstract The influences of hot deformation condition upon the microstructure of 5083 aluminum alloy during compressing in the temperature range of 300—450 ℃, the strain rate range of 0.01—1 s-1 and the strain range of 0.36—1.2 were studied by means of isothermal compressive deformation, optical microscopy and transmission electron microscopy. The results show that both the increase of deformation temperature and the decrease of strain rate benefit dynamic recrystallization, which results in the decrease of the dislocation density of 5083 aluminum alloy and the increase of the recrystallization grains size. With the increase of strain of 5083 aluminum alloy, the dislocation density decreases and the volume fraction of dynamic recrystallization increases. According to the exponential model of phenomenological theory and the linear regression method, the dynamic recrystallization grain size model of 5083 aluminum alloy during the thermoplastic deformation was constructed, and the model calculation value coincided well with the experimental data, as the average relative error was only 4.6%.
|
Published: 25 July 2017
Online: 2018-05-04
|
|
|
|
1 Zhang Haiyong, Yan Haipeng, Cao Jingyi, et al. Research on corrosion behavior of AA5083 Al alloy in seawater[J]. Mater Rev: Res,2015,29(11):105(in Chinese). 张海永, 闫海鹏, 曹京宜, 等. AA5083铝合金在海水中的腐蚀行为研究[J]. 材料导报:研究篇,2015,29(11):105. 2 Xu Xuefeng. Research on mechanical behavior and simulation and experiment of superplastic forming of 5083 alumimun alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2009(in Chinese). 徐雪峰. 5083铝合金力学性能及超塑性成型数值模拟与实验研究[D]. 南京:南京航空航天大学,2009. 3 Cheng Sonyi, Cheng Kanghua, Jia Le, et al. Effect of hot deformation conditions on grain structure and properties of 7085 aluminum alloy [J]. Trans Nonferr Met Soc China,2013,23(2):329. 4 Liu Wenyi, Zhao Huan, Li Dan, et al. Hot deformation behavior of AA7085 aluminum alloy during is othermal compression at elevated temperature [J]. Mater Sci Eng A,2014,596:176. 5 Jiang Fulin, Zhang Hui, Meng Chunbiao, et al. Recrystallization of 3104 aluminum alloy during compression at elevated temperature[J]. Trans Mater Heat Treat,2011,32(3):52 (in Chinese). 蒋福林, 张辉, 蒙春标, 等. 3104 铝合金高温热压缩过程的再结晶[J]. 材料热处理学报,2011,32(3):52. 6 Zou B, Chen Z Q , Liu J H, et al. Microstructure evolution of hea-vily deformed AA5083 Al-Mg alloy studied by positron annihilation spectroscopy[J]. Appl Surf Sci,2014,296:154. 7 Lin Shuangping, Nie Zuoren, Huang Hui, et al. Annealing behavior of a modified 5083 aluminum alloy[J]. Mater Des,2010,31:1607. 8 Lee Y B, Shin D H, Park K T, et al. Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature[J]. Scr Mater,2004,51:355 9 Wu Wenxiang, Sun Deqin, Cao Chunyan, et al. Flow stress beha-vior of 5083 aluminum alloy under hot compression deformation[J]. Chin J Nonferr Met,2007,17(10):1667 (in Chinese). 吴文祥, 孙德勤, 曹春艳, 等. 5083铝合金热压缩变形流变应力行为[J]. 中国有色金属学报,2007,17(10):1667. 10 Zhang Fei, Shen Jian, Yan Xiaodong, et al. Dynamic softening mechanism of 2099 alloy during hot deformation process[J]. Acta Metall Sin,2014,50(6):691(in Chinese). 张飞, 沈建, 闫晓东, 等. 2099合金热变形过程中的动态软化机制[J].金属学报,2014,50(6):691. 11 Chen Guiqing, Fu Gaosheng, Yan Wenyan, et al. Experimental research on dynamic recrystallization of 3003 aluminum alloy[J]. J Mater Eng,2011(8):77 (in Chinese). 陈贵清, 傅高升, 颜文煅, 等. 3003铝合金动态再结晶实验研究[J]. 材料工程,22011(8):77. 12 Yang Dong, et al. Dynamic recrystallization grain size evolution model of 7075 aluminum alloy during hot deformation[J]. Trans Nonferr Met Soc China,2013,23(10):2747 (in Chinese). 杨栋,等. 7075铝合金热变形时动态再结晶晶粒度演化模型[J]. 中国有色金属学报,2013,23(10):2747. 13 Zhang Hui, Yang Libin, Peng Dashu, et al. Numerical simulation on microstructural evolution during multipass hot-rolling of aluminum alloys[J]. Trans Nonferr Met Soc China,2001,11(2):230. 14 Huang Xudong, Zhang Hui, Han Yi, et al. Hot deformation beha-vior of 2026 aluminum alloy during compression at elevated temperature [J]. Mater Sci Eng A,2010,527:485. 15 Li Zhoubing, Shen Jian, Yan Liangming, et al. Effects of strain rate on microstructure and mechanical properties of 7055 aluminum alloy[J]. Rare Met,2010,34(5):643 (in Chinese). 李周兵, 沈健, 闫亮明, 等. 应变速率对7055铝合金显微组织和力学性能的影响[J]. 稀有金属,2010,34(5):643. 16 Zhen Liang, Hu Huie, Wang Xinyun, et al. Distribution characte-rization of boundary misorientation angle of 7050 aluminum alloy after high-temperature compression[J]. J Mater Process Technol,2009,209:754. 17 Gourdet S, Montheillet F. A model of continuous dynamic recrystallization[J]. Acta Mater,2003,51:2685. 18 Livan F, Gianluca B. CDRX modelling in friction stir welding of aluminum alloys[J]. Int J Machine Tools Manuf,2005,45:1188. |
|
|
|