Materials Reports 2021, Vol. 35 Issue (Z1): 21-28 |
INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Hydrogen Production by Hydrolysis of Sodium Borohydride Catalyzed by Non-Noble Metal Catalysts |
WANG Xiaolian1, YANG Mao1, LIU Yonghui1, ZHANG Yubin2, FENG Wei1
|
1 School of Mechanical Engineering, Chengdu University, Chengdu 610106, China 2 School of Automation and Electrical Engineering, Chengdu Technological University, Chengdu 611730, China |
|
|
Abstract Hydrogen production by hydrolysis of sodium borohydride has the advantages of safety and convenience, moderate hydrogen release temperature, easy control of the reaction, and high purity of hydrogen production. It has become a research hotspot in hydrogen production technology. Hydrogen production speed of pure sodium borohydride hydrolysis is slow and the hydrogen production rate is low. Suitable catalysts are often added to improve the rate of hydrogen liberation from sodium borohydride hydrolysis. Metal catalysts have been widely studied because of their high catalytic activity. Among them, noble metals limit their use due to their high prices, while non-noble metals are low in price and high in reserves. Moreover, in recent years, studies have found that the catalytic activity of some non-noble metal catalysts has been significantly improved. Therefore, from an economic point of view, it is highly desirable to use non-noble metals to catalyze the hydrolysis of sodium borohydride to produce hydrogen. In this paper, the research progress of unsupported catalysts and supported catalysts was introduced based on the development status of non-noble metal catalysts for hydrolysis of sodium borohydride at home and abroad in recent years, and its future development trend was prospected.
|
Published: 16 July 2021
|
|
Fund:Sichuan Provincial Department of Education (18ZB0133), Sichuan Province Engineering Center for Powder Metallurgy(SC-FMYJ2018-05), Sichuan Applied Basic Research Program (2018JY0062) and Chengdu University Research Project (2018XZB17). |
About author:: Xiaolian Wang received his Ph.D. degree in materials science from the School of Materials Science and Engineering, Sichuan University, in 2016. He is currently a full teacher in Chengdu University. His research inte-rests are hydrogen energy and fuel cell technology, powder metallurgy materials and quantum chemical calculations.Mao Yang received his B.S. degree from Chengdu University in 2020. He is currently pursuing his M.E. at the School of Mechanical Engineering, Chengdu University under the supervision of Dr. Xiaolian Wang. His research has focused on chemical hydrogen storage mate-rials.。 |
|
|
1 Midilli A, Dincer I. International Journal of Hydrogen Energy, 2008, 33(16), 4209. 2 Midilli A, Ay M, Dincer I, et al. Renewable & Sustainable Energy Reviews, 2005, 9(3), 255. 3 张月. 钴基复合催化剂的制备及其催化性能研究. 硕士学位论文, 青岛科技大学, 2018. 4 Dincer I, Acar C. International Journal of Hydrogen Energy, 2015, 40(34), 11094. 5 张翔, 孙奎斌, 周俊波. 无机盐工业, 2010, 42(1), 9. 6 徐东彦, 张华民, 叶威. 化学进展, 2007, 19(10), 1598. 7 赵鹏程, 谢自立, 杨子芹, 等. 电源技术, 2007,31(12), 988. 8 Schlesinger H I, Brown H C, Finholt A E, et al. Journal of the American Chemical Society, 1953, 75(1), 215. 9 Schlesinger H I, Brown H C, Finholt A E. Journal of the American Che-mical Society, 1953, 75(1), 205. 10 Gonçalves A, Castro P, Novais A, et al. Chemical Engineering Transactions, 2007, 12, 243. 11 翟瑞华. 硼氢化钠水解制氢催化剂的研究. 硕士学位论文, 中国石油大学, 2011. 12 谢广文, 王丽娜, 李忠. 青岛科技大学学报:自然科学版, 2015, 36(1), 1. 13 Bozkurt G, Ozer A, Yurtcan A B. Energy, 2019, 180, 702. 14 Bozkurt G, Ozer A, Yurtcan A B. International Journal of Hydrogen Energy, 2018, 43(49), 22205. 15 Rakap M, Kalua E E, Özkar S. Journal of Alloys & Compounds, 2011, 509(25), 7016. 16 Jeong S U, Kim R K, Cho E A, et al. Journal of Power Sources, 2005, 144(1), 129. 17 Ghodke N P, Rayaprol S, Bhoraskar V, et al. International Journal of Hydrogen Energy, 2020, 45(33), 16591. 18 Guo Y P, Dong Z P, Cui Z K, et al. International Journal of Hydrogen Energy, 2012, 37(2), 1577. 19 Dai H B, Gao L L, Liang Y, et al. Journal of Power Sources, 2009, 195(1), 307. 20 Ding X L, Yuan X X, Jia C, et al. International Journal of Hydrogen Energy, 2010, 35(20), 11077. 21 Zhuang D W, Zhang J J, Dai H B, et al. International Journal of Hydrogen Energy, 2013, 38(25), 10845. 22 白莹, 吴锋, 吴川, 等. 现代化工, 2006, 26(4), 28. 23 Wang X P, Liao J Y, Li H, et al. International Journal of Hydrogen Energy, 2018, 43(37), 17543. 24 Izgi M S, Sahin O, Saka C. International Journal of Hydrogen Energy, 2015, 41(3), 1600. 25 Wang Y, Zou K L, Zhang D, et al. International Journal of Hydrogen Energy, 2020, 45(16), 9845. 26 马敬环, 苏彦铭, 刘莹. 天津工业大学学报, 2020, 39(1), 31. 27 Patel N, Fernandes R, Miotello A. Journal of Catalysis, 2010, 271(2), 315. 28 Guo Y P, Feng Q H, Ma J T. Applied Surface Science, 2013, 273, 253. 29 Brack P, Dann S E, Wijayantha K G U. Energy Science & Engineering, 2015, 3(3), 174. 30 刘楠, 沈研, 王艳, 等. 可再生能源, 2015, 33(12), 1880. 31 李赛, 王丽娜. 广东化工, 2016, 43(9), 25. 32 Guo J, Hou Y J, Li B, et al. International Journal of Hydrogen Energy, 2018, 43(32), 15245. 33 赵婷, 王丹, 王鑫林, 等. 辽宁化工, 2019, 48(9), 853. 34 Şahin Ö, Kilinç D, Saka C. Journal Energy Institute, 2015, 89(4), 617. 35 张月, 颜双, 孙丹丹, 等. 化工科技, 2017, 25(5), 1. 36 Şahin Ö, Kilinç D, Saka C. Separation Science & Technology, 2015, 50(13), 2050. 37 Wei L, Dong X L, Yang Y M, et al. International Journal of Hydrogen Energy, 2020, 45(18), 10745. 38 Liu B H, Li Z P, Suda S. Journal of Alloys & Compounds, 2006, 415(1-2), 288. 39 魏磊, 马麦霞, 付君宇, 等. 化工进展, 2017, 36(12), 4462. 40 Fernandes R, Patel N, Miotello A. International Journal of Hydrogen Energy, 2009, 34(7), 2893. 41 Huang X K, Wu D F, Cheng D J. Journal of Colloid & Interface Science, 2017, 507, 429. 42 Wei L , Cao X R, Ma M X, et al. Functional Materials Letters, 2018, 11(1), 1. 43 Wei L, Dong X L, Ma M X, et al. International Journal of Hydrogen Energy, 2018, 43(3), 1529. 44 Kassem A A, Abdelhamid H N, Fouad D M , et al. International Journal of Hydrogen Energy, 2019, 44(59), 31230. 45 Balbay A, Saka C. Energy Sources Part A Recovery Utilization & Environmental Effects, 2018, 40(7), 1. 46 Tignol P, Demirci U B. International Journal of Hydrogen Energy, 2019, 44(27), 14207. 47 Balbay A, Saka C. Energy Sources Part A-recovery Utilization and Environmental Effects, 2018, 40(20), 2442. 48 Deonikar V G , Rathod P V , Pornea A M , et al. Journal of Industrial and Engineering Chemistry, 2020, 86, 167. 49 Kim J H , Kim K T , Kang Y M , et al. Journal of Alloys & Compounds, 2004, 379(1-2), 222. 50 Guo S Q, Wu Q Q, Sun J, et al. International Journal of Hydrogen Energy, 2017, 42(33), 21063. 51 Li Z, Li H L, Wang L N, et al. International journal of Hydrogen Energy, 2014, 39(27), 14935. 52 Yang C C, Chen M S, Chen Y W. International Journal of Hydrogen Energy, 2011, 36(2), 1418. 53 Cheng J, Xiang C L, Zou Y J, et al. Ceramics International, 2015, 41(1), 899. 54 Shih Y J, Su C C, Huang Y H, et al. Energy, 2013, 54, 263. 55 Lu Y C, Chen M S, Chen Y W. International Journal of Hydrogen Energy, 2012, 37(5), 4254. 56 于晓飞, 鲍新侠, 李其明, 等. 无机盐工业, 2015, 47(1), 59. 57 Kaur A, Gangacharyulu D, Bajpai P K. In: 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA). Auckland, New Zealand, 2015, pp. 757. 58 魏磊, 马麦霞, 景学敏, 等. 中国有色金属学报, 2017, 27(8), 1651. 59 Kilinç D, Şahin Ö, Saka C. International Journal of Hydrogen Energy, 2018, 43(1), 251. 60 Chaugule A A, Tamboli A H, Sheikh F A, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2015, 484, 242. 61 Sayin E S, Bayrakceken A, Eroglu I. International Journal of Hydrogen Energy, 2012, 37(21), 16663. 62 Kong Q Q, Feng W , Xie X X, et al. Catalysis Letters, 2018, 148(12), 3771. 63 Wei Y S, Huang X K, Wang J Y, et al. International Journal of Hydrogen Energy, 2017, 42(41), 25860. 64 Gao Z T, Ding C M, Wang J W, et al. International Journal of Hydrogen Energy, 2019, 44(16), 8365. 65 杨在兴, 徐嘉宝, 黄起竟, 等. 沈阳大学学报(自然科学版), 2018, 30(6), 436. 66 Xu D Y, Zhang X Y, Zhao X, et al. International Journal of Energy Research, 2019, 43(8), 3702. 67 Wei L, Liu H Y, Wang Q, et al. Functional Materials Letters, Doi:10.1142/S1793604719500504. 68 Abu-Zied B M, Alamry K A. Journal of Alloys and Compounds, 2019, 798, 820. 69 Makiabadi M, Shamspur T, Mostafavi A. International Journal of Hydrogen Energy, 2020,45(3), 1706. 70 Baytar O. Acta Chimica Slovenica, 2018, 65(2), 407. 71 Didehban A, Zabihi M, Shahrouzi J R. International Journal of Hydrogen Energy, 2018, 43(45), 20645. 72 Rambabu K, Hai A, Bharath G, et al. International Journal of Hydrogen Energy, 2019, 44(28), 14406. 73 Zhang X L, Li C H, Qu J L, et al. Carbon Resources Conversion, 2019, 2(3), 225. 74 Soltani M, Zabihi M. International Journal of Hydrogen Energy, 2020, 45( 22), 12331. 75 Li J H, Hong X Y, Wang Y L, et al. Energy Storage Materials, 2020, 27, 187. 76 Xiang C L, Jiang D D, She Z, et al. International Journal of Hydrogen Energy, 2015, 40(11), 4111. 77 Cui Z K, Guo Y P, Ma J T. International Journal of Hydrogen Energy, 2016, 41(3), 1592. 78 苗强, 黄子健, 李其明, 等. 无机盐工业, 2018, 50(7),80. 79 Chou C C , Hsieh C H , Chen B H . Energy, 2015, 90(2), 1973. 80 Li Y, Hou X W, Wang J, et al. International Journal of Hydrogen Energy, 2019, 44(55), 29075. 81 李忠, 王丽娜, 王桂雪, 等. 燃料化学学报, 2015, 43(3), 372. 82 Al-Enizi A M, Nafady A, El-Halwany M M, et al. International Journal of Hydrogen Energy, 2019, 44(39), 21716. 83 贾若琨, 马海明, 杨晓航, 等. 吉林大学学报(理学版), 2015, 53(4), 779. 84 Prasad D , Patil K N , Sandhya N , et al. Applied Surface Science, 2019, 489, 538. 85 Huang Y Q, Wang Y, Zhao R X, et al. International Journal of Hydrogen Energy, 2008, 33(23), 7110. 86 Chinnappan A, Puguan J M C, Chung J, et al. Journal of Power Sources, 2015, 293, 429. 87 Li F, Arthur E E, La D, et al. Energy, 2014, 71, 32. 88 Bandal H A, Jadhav A R, Kim H. Journal of Alloys & Compounds, 2017, 699, 1057. 89 Wang Y, Lu Y S, Wang D, et al. International Journal of Hydrogen Energy, 2016, 41(36), 16077. 90 Huang Y Y, Wang K Y, Cui L, et al. Catalysis Communications, 2016, 87(47), 94. 91 Wei Y S, Wang M S, Fu W Y, et al. Journal of Alloys and Compounds, 2020, 836, 1. 92 赵士夺, 李芳, 李其明, 等. 应用化学, 2016, 33(6), 655. 93 Manna J, Roy B, Pareek D, et al. Catalysis, Structure & Reactivity, 2017, 3(4), 157. 94 Wang Y, Shen Y, Qi K Z, et al. Renewable energy, 2016, 89, 285. 95 李正, 姜妍彦. 大连工业大学学报, 2020, 39(1), 64. 96 Didehban A, Zabihi M, Babajani N. Polyhedron,Doi: 10.1016/j.poly.2020.114405. 97 Kıpc I, Kalpazan E. International Journal of Hydrogen Energy, 2020, 45(50), 26434. 98 Guo Y H, Zhang R Q, Hao W J, et al. International Journal of Hydrogen Energy, 2019, 45(1), 380. 99 梁志花, 李其明, 李芳, 等. 应用化工, 2016, 45(10), 1832. 100 Saka C, Eygi M S, Balbay A. International Journal of Hydrogen Energy, 2020, 45(30), 15086. |
|
|
|