REVIEW PAPER |
|
|
|
|
|
Morphology and Drug Encapsulation Properties of Electrospun Bead-on-string Nanofibers:A Review |
LIU Zhaolin
|
College of Textile and Garment, Hebei University of Science and Technology, Shijiazhuang 050018; |
|
|
Abstract Drug burst release phenomenon hinders the development of electrospun drug-loading nanofibers. Electrospun bead-on-string nanofibers can carry drug particles effectively by the beads, which provide a new solution to drug encapsulation. However, the influencing factors of morphology and preparation process of the bead-on-string nanofibers are very complicated and unstable. Therefore, morphology controlling and drug encapsulation properties of the bead-on-string nanofibers become the research hot spot recently. Different structures of the beaded nanofibers are compared and the morphology which can realize drug encapsulation is clarified. The forming mechanisms of the bead-on-string nanofibers are discussed. The influence of solution properties and processing parameters on morphology of the beaded nanofibers is analyzed. Finally, drug encapsulation performance of the bead-on-string nanofibers is introduced.
|
Published: 10 February 2017
Online: 2018-05-02
|
|
|
|
1 Sell S, Barnes C, Smith M, et al. Extracellular matrix regenerated: Tissue engineering via electrospun biomimetic nanofibers[J]. Polym Int,2007,56(11):1349. 2 Hu J, Li H Y, Williams G R, et al. Electrospun poly(n-isopropylacrylamide)/ethyl cellulose nanofibers as thermoresponsive drug deli-very systems[J]. J Pharmaceutical Sci,2016,105(3):1104. 3 Adhikari S P, Pant H R, Mousa H M, et al. Synthesis of high po-rous electrospun hollow TiO2 nanofibers for bone tissue engineering application[J]. J Ind Eng Chem,2016,35(2):75. 4 Walmsley G G, Mcardle A, Tevlin R, et al. Nanotechnology in bone tissue engineering[J]. Nanomedicine: Nanotechnol Biology Medicine,2015,11(5):1253. 5 Bertoncelj V, Pelipenko J, Kristl J, et al. Development and bioeva-luation of nanofibers with blood-derived growth factors for dermal wound healing[J]. European J Pharmaceutics Biopharmaceutics,2014,88(1):64 . 6 Sundaramurthi D, Krishnan U M, Sethuraman S. Electrospun nanofibers as scaffolds for skin tissue engineering[J]. Polym Rev,2014,54(2):348. 7 Rocco K A, Maxfield M W, Best C A, et al. In vivo applications of electrospun tissue-engineered vascular grafts: A review[J]. Tissue Eng Part B: Rev,2014,20(6):628. 8 Rošic R, Kocbek P, Pelipenko J, et al. Nanofibers and their biomedical use[J]. Acta Pharmaceutica,2013,63(3):295. 9 Chung S, Ingle N P, Montero G A, et al. Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning[J]. Acta Biomaterialia,2010,6(6):1958. 10 Sill T J, Recum H A V. Electrospinning: Applications in drug deli-very and tissue engineering[J]. Biomaterials,2008,29(13):1989. 11 Laha A, Yadav S, Majumdar S, et al. In-vitro release study of hydrophobic drug using electrospun cross-linked gelatin nanofibers[J]. Biochem Eng J,2016,105(1):481. 12 Sultanova Z, Kaleli G, Kabay G, et al. Controlled release of a hydrophilic drug from coaxially electrospun polycaprolactone nanofibers[J]. Int J Pharmaceutics,2016,505(1-2):133. 13 Chou S F, Carson D, Woodrow K A. Current strategies for sustai-ning drug release from electrospun nanofibers[J]. J Controlled Release,2015,220(24):584. 14 Karuppuswamy P, Venugopal J R, Navaneethan B, et al. Polycaprolactone nanofibers for the controlled release of tetracycline hydrochloride[J]. Mater Lett,2015,141:180. 15 Falde E J, Freedman J D, Herrera V L M, et al. Layered superhydrophobic meshes for controlled drug release[J]. J Controlled Release,2015,214(18):23. 16 Aytac Z, Dogan S Y, Tekinay T, et al. Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers[J]. Colloids Surf B: Biointerfaces,2014,120(8):125. 17 Patel V F, Liu F, Brown M B. Advances in oral transmucosal drug delivery[J]. J Controlled Release,2011,153 (2):106. 18 Zamani M, Morshed M, Varshosaz J, et al. Controlled release of metronidazole benzoate from poly ε-caprolactone electrospun nanofibers for periodontal diseases[J]. European J Pharmaceutics Biopharmaceutics,2010,75(2):179. 19 Hsu K H, Fang S P, Lin C L, et al. Hybrid electrospun polycaprolactone mats consisting of nanofibers and microbeads for extended release of dexamethasone[J]. Pharmaceutical Res,2016,33(3):1509. 20 丁辛,隋晓,田玲玲,等.用串珠纤维担载蛋白颗粒的组织工程纤维支架的制备方法:中国,CN102908665B[P]. 2014-12-10. 21 Fong H, Chun I, Reneker D. Beaded nanofibers formed during electrospinning[J]. Polymer,1999,40(16):4585. 22 Lin J, Ding B, Yu J, et al. Direct fabrication of highly nanoporous polystyrene fibers via electrospinning[J]. ACS Appl Mater Interfaces,2010,2(2):521. 23 邓红兵,黄容,杜予民,等.壳聚糖-累托石基电纺纳米纤维膜中球形串珠的成型机理[C]//中国化学会第28届学术年会第四会场摘要集.成都,2012:384. 24 Rayleigh L. On the equilibrium of liquid conducting masses charged with electricity[J]. Philosophical Magazine,1882,14(87):184. 25 Zuo W, Zhu M, Yang W, et al. Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning[J]. Polym Eng Sci,2005,45(5):704. 26 Yu J H, Fridrikh S V, Rutledge G C. The role of elasticity in the formation of electrospun fibers[J]. Polymer,2006,47(13):4789. 27 Kong Haiyan. Research on principle of bubble electrospinning and morphologies controlling and applications of bubble electrospun nanofibers[D]. Suzhou: Soochow University,2015(in Chinese). 孔海燕.气泡静电纺原理及纳米纤维形貌控制与应用研究[D].苏州:苏州大学,2015 . 28 Gupta P, Elkins C, Long T E, et al. Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent[J]. Polymer,2005,46(13):4799. 29 Zhang Y, Li X T, Ding X, et al. Effects of polyethylene oxide concentration on the size of beads in electrospun beaded nanofibers[J]. J Donghua University,2014,31(4):511. 30 Li Ni, Qin Xiaohong, Wang Shanyuan. Effect of solution properies on the morphology of electrospun nanofibers[J]. J Textile Res,2008,29(4):1(in Chinese). 李妮,覃小红,王善元.溶液性质对静电纺纤维形态的影响[J].纺织学报,2008,29(4):1. 31 Liu Y, He J H, Yu J Y, et al. Controlling numbers and sizes of beads in electrospun nanofibers[J]. Polym Int,2008,57(4):632. 32 Bhattarai S R, Bhattarai N, Yi H K, et al. Novel biodegradable electrospun membrane: Scaffold for tissue engineering[J]. Biomaterials,2004,25(13):2595. 33 Lin Jinyou. Preparation of hierarchically nanostructured electrospun fibers and its application in oil/water separation[D].Shanghai:Dong-hua Universiry,2012(in Chinese). 林金友.静电纺微纳米多级结构纤维制备及其在油水分离中的应用[D].上海:东华大学,2012. 34 Meechaisue C, Dubin R, Supaphol P, et al. Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material[J]. J Biomater Sci,2006,17(9):1039. 35 Deitzel J M, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer,2001,42(1):261. 36 Megelski S, Stephens J S, Chase D B, et al. Micro- and nanostructured surface morphology on electrospun polymer fibers[J]. Macromolecules,2002,35(22):8456. 37 Zong X, Kim K, Fang D, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J]. Polymer,2002,43(16):4403. 38 Zhang Yuan. Reasearch on the morphology and size controlling of electrospun beaded nanofibers for drug encapsulation[D]. Shanghai: Donghua University,2015 (in Chinese). 张媛.静电纺载药串珠纤维形态和尺寸的可控性研究[D].上海:东华大学,2015. 39 Buchko C J, Chen L C, Shen Y, et al. Processing and microstructu-ral characterization of porous biocompatible protein polymer thin films[J]. Polymer,1999,40(26):7397. 40 Qi H, Hu P, Xu J, et al. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: Morphology characterization and preliminary release assessment[J]. Biomacromolecules,2006,7(8):2327. 41 Sui Xiao. Encapsulation of particle drugs by electrospun beaded-on-string nanofibers[D]. Shanghai: Donghua University,2013(in Chinese). 隋晓.静电纺串珠纤维对颗粒蛋白药物的担载[D].上海:东华大学,2013. |
|
|
|