NEW MATERIAL AND TECHNOLOGY |
|
|
|
|
|
Progress on Self-driven Nanotechnology for Biological Systems |
ZHAO Bing, QI Ning, ZHANG Desuo, LI Qingsong, ZHANG Keqin
|
College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 |
|
|
Abstract Increasing implantable nanosystems can be applied to biological systems due to the rapid development of nanotech-nology. Therefore, it is important to develop new energy nanosystems in this area. Self-driven nanotechnologies can collect energy from the environment and convert into electric power as a self-power-supported device, which is expected to become an effective solution for powering implantable nanosystems. In this paper, systematical summary has been reported on current research status, confronting problems and future research directions of nanogenerators, biofuel batteries and solar cells for further application and deve-lopment of self-driven nanotechnologies.
|
Published: 10 January 2017
Online: 2018-05-02
|
|
|
|
1 Ben Amar A, Kouki A B, Cao H. Power approaches for implantable medical devices[J]. Sensors,2015,15(11):28889. 2 Hannan M A, Mutashar S, Samad S A, et al. Energy harvesting for the implantable biomedical devices: Issues and challenges[J]. Bio-med Eng OnLine,2014,13:79. 3 Wang Z L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics[J]. Adv Funct Mater,2008,18(22):3553. 4 Xu Qi, Gu Long, Qin Yong. Flexible piezoelectric nanogenerators[J]. Chinese Sci Bull,2016(12):1288(in Chinese). 徐奇,顾陇,秦勇.柔性压电纳米发电机[J].科学通报,2016(12):1288. 5 Hu Y, Wang Z L. Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors[J]. Nano Energy,2015,14:3. 6 Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxi-de nanowire arrays[J]. Science,2006,312(5771):242. 7 Wang Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano,2013,7(11):9533. 8 Pan Chunxu, Li Weiping, Zhang Yupeng, et al. Research progress on nanogenerators based on nanomaterials and nanostructures[J]. J Inorg Mater,2014(9):897(in Chinese). 潘春旭,李伟平,张豫鹏,等.基于纳米材料与纳米结构的纳米电源研究进展[J]. 无机材料学报,2014(9):897. 9 Wang X, Song J, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves[J]. Science,2007,316(5821):102. 10 Qin Y, Wang X, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature,2008,451(7180):805. 11 Yang R, Qin Y, Dai L, et al. Power generation with laterally pac-kaged piezoelectric fine wires[J]. Nat Nanotechnol,2009,4(1):34. 12 Zhu G, Yang R, Wang S, et al. Flexible high-output nanogenerator based on lateral ZnO nanowire array[J]. Nano Lett,2010,10(8):3151. 13 Hu Y, Zhang Y, Xu C, et al. High-output nanogenerator by ratio-nal unipolar assembly of conical nanowires and its application for dri-ving a small liquid crystal display[J]. Nano Lett,2010,10(12):5025. 14 Zhu G, Wang A C, Liu Y, et al. Functional electrical stimulation by nanogenerator with 58 V output voltage[J]. Nano Lett,2012,12(6):3086. 15 Chen X, Xu S, Yao N, et al. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers[J]. Nano Lett,2010,10(6):2133. 16 Yang Ya, Yang Wanlu. Hybridized electromagnetic-triboelectric nanogenerator[J]. Chinese Sci Bull,2016(12):1268(in Chinese). 杨亚,杨婉璐.复合型电磁-摩擦纳米发电机[J]. 科学通报,2016(12):1268. 17 Guo Yinben, Zhang Qinghong, Li Yaogang, et al. Progress of the research on wearable triboelectric nanogenerator[J]. Mater China,2016(2):91(in Chinese). 郭隐犇,张青红,李耀刚,等.可穿戴摩擦纳米发电机的研究进展[J].中国材料进展,2016(2):91. 18 Fan F, Tian Z, Wang Z L. Flexible triboelectric generator[J]. Nano Energy,2012,1(2):328. 19 Huang T, Wang C, Yu H, et al. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyviny-lidene fluoride piezoelectric nanofibers[J]. Nano Energy,2015,14:226. 20 Hu Y, Yang J, Niu S, et al. Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting[J]. ACS Nano,2014,8(7):7442. 21 Li X, Lin Z, Cheng G, et al. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor[J]. ACS Nano,2014,8(10):10674. 22 Kim S K, Bhatia R, Kim T, et al. Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators[J]. Nano Energy,2016,22:483. 23 Kuang S Y, Chen J, Cheng X B, et al. Two-dimensional rotary triboelectric nanogenerator as a portable and wearable power source for electronics[J]. Nano Energy,2015,17:10. 24 Zhang Yue. Rapid development of micro and nano energy technology[J]. Chinese Sci Bull,2016(12):1267(in Chinese). 张跃.快速发展的微纳能源技术[J].科学通报,2016(12):1267. 25 Li Z, Zhu G, Yang R, et al. Muscle-driven in vivo nanogenerator[J]. Adv Mater,2010,22(23):2534. 26 Zheng Q, Shi B, Fan F, et al. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator[J]. Adv Mater,2014,26(33):5851. 27 Zheng Q, Zou Y, Zhang Y, et al. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source[J]. Sci Adv,2016,2(3):1501478. 28 Li Z, Yang R, Yu M, et al. Cellular level biocompatibility and biosafety of ZnO nanowires[J]. J Phys Chem C,2008,112(51):20114. 29 Yuan M, Cheng L, Xu Q, et al. Biocompatible nanogenerators through high piezoelectric coefficient 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7-Ca0.3)TiO3 nanowires for in-vivo applications[J]. Adv Mater,2014,26(44):7432. 30 Cheng L, Yuan M, Gu L, et al. Wireless, power-free and implan-table nanosystem for resistance-based biodetection[J]. Nano Energy,2015,15:598. 31 Zhang Wei, Diao Liwei, Chen Hang, et al. Application of piezoelectric nanogenerators in implantable electronic devices[J]. Beijing Bio-med Eng,2013(5):541(in Chinese). 张巍,刁力为,陈航,等.纳米压电发电技术在人体植入式电子设备中的应用[J].北京生物医学工程,2013(5):541. 32 Liu Haitao, Zhang Yingjiu, Pan Caofeng. Self-powered nanosystems based on nanofuel cell[J]. Chinese Sci Bull,2016,61(12):1298 (in Chinese). 刘海涛,张迎九,潘曹峰.基于纳米燃料电池的自供能纳米系统[J]. 科学通报,2016,61(12):1298. 33 Schroeder U. From in vitro to in vivo-biofuel cells are maturing[J]. Angew Chem Int Ed,2012,51(30):7370. 34 Katz E, Macvittie K. Implanted biofuel cells operating in vivo-me-thods, applications and perspectives-feature article[J]. Energy Environ Sci,2013,6(10):2791. 35 Falk M, Villarrubia C W N, Babanova S, et al. Biofuel cells for biomedical applications: Colonizing the animal kingdom [J]. Chemphyschem,2013,14:2045. 36 Cinquin P, Gondran C, Giroud F, et al. A glucose biofuel cell implanted in rats [J]. Plos One,2010,5(5):e104765. 37 Halamkova L, Halamek J, Bocharova V, et al. Implanted biofuel cell operating in a living snail[J]. J Am Chem Soc,2012,134(11):5040. 38 Rasmussen M, Ritzmann R E, Lee I, et al. An implantable biofuel cell for a live insect[J]. J Am Chem Soc,2012,134(3):1458. 39 Szczupak A, Halamek J, Halamkova L, et al. Living battery-Bio-fuel cells operating in vivo in clams[J]. Energy Environ Sci,2012,5(10):8891. 40 Macvittie K, Halamek J, Halamkova L, et al. From“cyborg” lobsters to a pacemaker powered by implantable biofuel cells[J]. Energy Environ Sci,2013,6(1):81. 41 Pan C, Fang Y, Wu H, et al. Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices[J]. Adv Mater,2010,22(47):5388. 42 Yang Q, Liu Y, Li Z, et al. Self-powered ultrasensitive nanowire photodetector driven by a hybridized microbial fuel cell[J]. Angew Chem Int Ed,2012,51(26):6443. 43 Hansen B J, Liu Y, Yang R, et al. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy[J]. ACS Nano,2010,4(7):3647. 44 Gai P, Ji Y, Wang W, et al. Ultrasensitive self-powered cytosensor[J]. Nano Energy,2016,19:541. 45 Tian B, Zheng X, Kempa T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature,2007,449(7164):885. 46 Greene L E, Law M, Yuhas B D, et al. ZnO-TiO2 core-shell nanorod/P3HT solar cells[J]. J Phys Chem C,2007,111(50):18451. 47 Tang J, Huo Z, Brittman S, et al. Solution-processed core-shell nanowires for efficient photovoltaic cells[J]. Nat Nanotechnol,2011,6(9):568. 48 Cui S, Yin D, Chen Y, et al. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct[J]. ACS Nano,2013,7(1):676. 49 Chen Zhigang, Kuang Xingyu, Song Linlin, et al. Research progress in NIR-light-driven nanomaterials and nanodevices [J].Chinese J Inorg Chem,2013(8):1574(in Chinese). 陈志钢,匡兴羽,宋琳琳,等.近红外光驱动的纳米材料和器件的研究进展[J].无机化学学报,2013(8):1574. 50 Wang Min, Wang Wubin, Wu Liang, et al. Up-conversion nanomaterials and their applications of enhancing photoelectric efficiency in solar cells [J]. Mater Rev:Rev,2015,29(8):142(in Chinese). 王敏,王武斌,吴靓,等.上转换纳米材料及其在提高太阳能电池光电效率中的应用[J].材料导报:综述篇,2015,29(8):142. 51 Chen Z, Zhang L, Sun Y, et al. 980-nm laser-driven photovoltaic cells based on rare-earth up-converting phosphors for biomedical applications[J]. Adv Funct Mater,2009,19(23):3815. 52 Zhang L, Tian Q, Xu W, et al. Construction of 980 nm laser-driven dye-sensitized photovoltaic cell with excellent performance for powering nanobiodevices implanted under the skin[J]. J Mater Chem,2012,22(35):18156. 53 Wu J, Chen F, Chuang M, et al. Near-infrared laser-driven polymer photovoltaic devices and their biomedical applications[J]. Energy Environ Sci,2011,4(9):3374. 54 Wu J, Chen F, Chang S, et al. Upconversion effects on the perfor-mance of near-infrared laser-driven polymer photovoltaic devices[J]. Org Electron,2012,13(10):2104. 55 Zhao B, Qi N, Zhang K Q, et al. Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4∶Yb,Er nanocomposites with metal-enhanced fluorescence behavior[J]. Phys Chem Chem Phys,2016,18(22):15289. 56 Han S, Deng R, Xie X, et al. Enhancing luminescence in lanthanide-doped upconversion nanoparticles[J]. Angew Chem Int Ed,2014,53(44):11702. |
|
|
|