Materials Reports 2021, Vol. 35 Issue (Z1): 644-649 |
POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Geopolymer Cement |
YANG Da1, LU Mingyang1, SONG Di1, BAI Shuxia2, ZHANG Guohua3, HU Xiuying1, PANG Laixue1
|
1 College of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China 2 College of Mechanical Engineering, Shandong Jiaotong University, Jinan 250357, China 3 Weifang Shengde Concrete Co. Ltd, Weifang 262100, China |
|
|
Abstract Geopolymer cement is a kind of environment-friendly inorganic cementitious materials. It takes metakaolin rich in resources or industrial solid waste with high silicon, aluminum and low calcium as precursors. And it can be mixed with a variety of other solid wastes and chemical agents to adjust the performance, with good controllability. Compared with Portland cement, its mechanical properties, working performance and durability have great advantages. It is one of the best materials to replace Portland cement in the future. This paper reviewed the research progress of geopolymer cement at home and abroad in the aspects of precursor materials, reaction mechanism, mechanical properties, working performance and durability, and discussed the current problems and future development prospects of geopolymer cement.
|
Published: 16 July 2021
|
|
Fund:Nature Science Foundation of Shandong Province(ZR2020ME231), the Key Research and Development Project of Shandong Province(2019GGX102050),Key Project of Conversion of New and Old Kinetic Energy in 2019 (High-efficient fabrication technology of dry jet wet spinning high strength carbon fiber). |
About author:: Da Yang received his B.E. degree in civil engineering from the Harbin University of Science and Technology in Sep. 2015—Sep. 2019. He is studying at Shandong Jiaotong University majoring in transportation enginee-ring. At present, he is mainly engaged in the research of alkali activated solid waste cementitious materials.Laixue Pang obtained his doctoral degree from the Shandong University (SDU) and served in School of Civil Engineering, Shandong Jiaotong University now. He is currently a professor and master supervisor. He performed collaborative research in 2012-2013 in Tsinghua University (Department of Materials Science), 2015—2016 in University of Central Florida. He has published more than 30 journal papers, applied 15 national invention patents and 10 of them were authorized. His team's research interests are high performance cementitious materials, solid waste resourcization, photocatalytic building materials. |
|
|
1 王贵兵. 资源节约与环保,2016(12),13. 2 Meyer C. Cement and Concrete Composites, 2009, 31 (8),601. 3 Louise K, Frank G. Construction and Building Materials, 2013, 43(6), 125. 4 倪文,王恩,周佳.新材料产业,2003(6),24. 5 赵启迪. 工业固废地质聚合物材料增强及性能优化研究. 硕士学位论文,北京化工大学,2018. 6 Liu F Q, Zheng M L, Ye Y S. Construction and Building Materials, 2020, 258,120304. 7 Davidovits J. In:Proceedings of the First European Conference on Soft Mineralogy.Paris,1988, pp.25. 8 周海龙,梁玉婧,李波, 等. 硅酸盐通报,2020,39(9),2858. 9 易鸣,吴大志,夏琳玲. 粉煤灰综合利用,2019(6),31. 10 李一聪, 王世玉, 钟卿瑜, 等.交通科学与工程, 2020, 36(2), 35. 11 Jan Kohout,Petr Koutník. Materials,2020, 13(10), 3390. 12 朱祥. 机械活化粉煤灰活性研究综述. 商品混凝土, 2018(Z1), 39. 13 王丽萍, 徐靓, 王永旺, 等. 矿产保护与利用, 2020, 40(3), 90. 14 Fernández-Jiménez A, Palomo A, Criado M. Cement and Concrete Research, 2005, 35(6), 1204. 15 张大旺, 王栋民. 材料导报:综述篇, 2018, 32(5), 1519. 16 苏春晓. 高掺量粉煤灰基地质聚合物基本力学性能及预制叠合梁受弯性能研究. 硕士学位论文, 深圳大学, 2020. 17 李刚, 秦伟, 赵俊哲, 等. 中国专利, CN110423057A, 2019. 18 宋庆春. 煤矸石基地质聚合物及其多孔材料的制备与性能研究. 硕士学位论文, 南华大学, 2019. 19 柴淑媛, 李艳, 张雪芳, 等. 墙材革新与建筑节能, 2019,11, 70. 20 张桂花. 地质聚合物基有机-无机复合胶凝材料的力学性能与作用机理研究. 硕士学位论文, 华南理工大学, 2020. 21 Davidovits J. Geopolymer chemistry and applications, CSS Bookshops, Limited, Agency & Publishing, 2011. 22 Davidovits J. 2005年水泥技术大会暨第七届全国水泥技术交流大会.中国,海口, 2005, pp. 112. 23 Xu H, Deventer J S. International Journal of Mineral Processing, 2000, 59(3), 247. 24 García Lodeiro I, Fernández-Jimenez A,Palomo A , et al. Cement and Concrete Research, 2009, 40(1), 27. 25 Davidovits J, Journal of Thermal Analysis and Calorimetry, 1991,37,1633. 26 李化建. 材料导报, 2007, 21 (9), 91. 27 黄小川, 刘长江, 王梦斐, 等. 人民长江, 2021, 52(1), 158. 28 丁铸, 洪鑫, 朱继翔, 等. 电子显微学报, 2018, 37(2), 145. 29 刘进琪, 王世玉, 彭晖, 等. 交通科学与工程, 2020, 36(3), 8. 30 Mabroum S, Aboulayt A, Taha A, et al. Journal of Cleaner Production, 2020, 261, 121317. 31 刘仍光. 水泥-矿渣复合胶凝材料的水化机理与长期性能. 硕士学位论文, 清华大学, 2013. 32 Yip C K, Lukey G C, Provis J L, et al. Cement and Concrete Research, 2008, 38 (4), 554. 33 罗新春, 汪长安. 硅酸盐学报, 2015, 43 (12), 1800. 34 Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, et al. Cement and Concrete Research, 2011, 41 (9), 923. 35 Hong S, Kim H. Scientific Reports, 2019, 9, 15694 . 36 张越博. 微波加热对碱激发高钙粉煤灰力学性能影响的试验研究. 硕士学位论文, 西安科技大学, 2019. 37 荆锐, 刘宇, 张慧杰, 等. 硅酸盐通报, 2020, 39(10), 3237. 38 季韬, 张检梅, 王灿强. 混凝土与水泥制品, 2019(12), 87. 39 刘宇飞. 基于地质聚合技术的碱渣注浆材料制备与性能研究. 硕士学位论文, 河北工业大学, 2017. 40 王腾飞, 何怡畅. 混凝土世界, 2019,7, 58. 41 刘骅.无机聚合物混凝土耐久性能试验研究. 硕士学位论文, 武汉理工大学, 2011. 42 赵启迪, 工业固废地质聚合物材料增强以及性能优化研究. 硕士学位论文, 北京化工大学, 2018. 43 Aygörmez Y, Canpolat O, Mukhallad M, et al. Construction and Building Materials, 2020, 120267. 44 Bakharev T. Cement and Concrete Research, 2005, 35(4), 658. 45 朱颖灿, 张祖华, 刘意, 等. 硅酸盐通报, 2020, 39(8), 2458. 46 郭丽萍, 张健, 曹园章, 等. 材料导报:综述篇, 2017, 31(12), 132. |
|
|
|