POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Thermal Conductivity and Thermoelectricity Applications of Covalent Organic Frameworks (COF) Materials |
WANG Zixiao, XIONG Liangtao, LI Haoyuan*
|
School of Microelectronics, Shanghai University, Shanghai 201800, China |
|
|
Abstract Covalent organic framework (COF) materials are a class of periodically ordered porous materials formed by light atoms (C, B, N, O, etc.) connected through covalent bonds, featuring adjustable thermal conductivity suitable for various thermal applications. COF materials with high thermal conductivity can be utilized in heat management modules like device heat sinks, while those with low thermal conductivity can leverage the thermoelectric effect to convert temperature gradients into voltage, thereby providing energy. This review discusses the influence of factors such as pore size, crystalline state, temperature, gas adsorption, etc., on the thermal conductivity of COF materials. It summarizes the range of thermal conductivity values of current COF materials and recent research on utilizing COF materials for thermal conduction or insulating properties and thermoelectricity properties. Finally, the review provides a summary and outlook on the development direction of COF in terms of thermal conduction, aiming to offer insights and inspiration for further advancements in COF-related thermal applications.
|
Published: 25 June 2024
Online: 2024-07-17
|
|
Fund:National Natural Science Foundation of China (22103053). |
|
|
1 Geng K, He T, Liu R, et al. Chemical Reviews, 2020, 120 (16), 8814. 2 Wu M X, Yang Y W. Chinese Chemical Letters, 2017, 28 (6), 1135. 3 Knebel A, Caro J. Nature Nanotechnology, 2022, 17 (9), 911. 4 Wang L, Wu J. Chemical Engineering Progress, DOI:10.16085/j.issn.1000-6613.2023-0952 (in Chinese). 王丽娜, 武金升. 化工进展, DOI:10.16085/j.issn.1000-6613.2023-0952. 5 Yusran Y, Li H, Guan X, et al. EnergyChem, 2020, 2(3), 100035. 6 Liu J, Wang N, Ma L. Chemistry-an Asian Journal, 2020, 15 (3), 338. 7 Zhao D, Wang B, Chong Y, et al. Materials Engineering, 2023, 51 (5), 58(in Chinese). 赵冬冬, 王冰, 崇玉亮, 等. 材料工程, 2023, 51 (5), 58. 8 Li J, Jing X, Li Q, et al. Chemical Society Reviews, 2020, 49 (11), 3565. 9 Mandal A K, Mahmood J, Baek J. ChemNanoMat, 2017, 3 (6), 373. 10 Zhang H, Geng Y, Huang J, et al. Energy & Environmental Science, 2023, 16 (3), 889. 11 Keller N, Bein T. Chemical Society Reviews, 2021, 50 (3), 1813. 12 Ren X, Liao G, Li Z, et al. Coordination Chemistry Reviews, 2021, 435, 213781. 13 Kwon J, Ma H, Giri A, et al. ACS Nano, 2023, 17(16), 15222. 14 Giri A, Hopkins P E. Nano Letter, 2021, 21 (14), 6188. 15 Huang B L, Ni Z, Millward A, et al. International Journal of Heat and Mass Transfer, 2007, 50 (3-4), 405. 16 Ying P, Zhang J, Zhang X, et al. Journal of Physical Chemistry C, 2020, 124 (11), 6274. 17 Ma H, Aamer Z, Tian Z. Materials Today Physics, 2021, 21, 100536. 18 Feng D, Feng Y, Liu Y, et al. Journal of Physical Chemistry C, 2020, 124 (15), 8386. 19 Evans A M, Giri A, Sangwan V K, et al. Nature Materials, 2021, 20 (8), 1142. 20 Merillas B, Vareda J P, Martín-de León J, et al. Polymers, 2022, 14 (13), 2556. 21 Haase F, Lotsch B V. Chemical Society Reviews, 2020, 49 (23), 8469. 22 Chen C, Huang C, Chuang S. Advanced Functional Materials, 2015, 25 (2), 207. 23 Evans A M, Ryder M R, Ji W, et al. Faraday Discuss, 2021, 225, 226. 24 Sajid H. Physical Chemistry Chemical Physics, 2024, 26 (11), 8577. 25 Tritt T M. Thermal conductivity:theory, properties, and applications, Springer Science & Business Media, Germany, 2005, pp. 12. 26 Howell J R, Mengüç M P, Daun K, et al. Thermal radiation heat transfer, CRC Press, USA, 2021, pp. 45. 27 Volz S G, Chen G. Physical Review B, 2000, 61 (4), 2651. 28 Gustafsson S E. Review of Scientific Instruments, 1991, 62 (3), 797. 29 Abad B, Borca-Tasciuc D A, Martin-Gonzalez M S. Renewable and Sustainable Energy Reviews, 2017, 76, 1348. 30 Stalhane B, Pyk S. Tek Tidskr, 1931, 61 (28), 389. 31 Tan F, Han S, Peng D, et al. Journal of the American Chemical Society, 2021, 143 (10), 3927. 32 Ma Q, Zeng L, Liu X, et al. Microporous and Mesoporous Materials, 2022, 331, 111623. 33 Ji H, Li M, Yan G, et al. ACS Applied Materials & Interfaces, 2023, 15 (30), 36738. 34 Freitas S K S, Borges R S, Merlini C, et al. Journal of Physical Chemistry C, 2017, 121 (48), 27247. 35 Liu Y, Feng Y, Huang Z, et al. Journal of Physical Chemistry C, 2016, 120 (30), 17060. 36 Thakur S, Giri A. Journal of Materials Chemistry A, 2023, 11 (35), 18660. 37 Grimvall G. Thermophysical properties of materials, Elsevier, Netherlands, 1999, pp. 11. 38 Klemens P G. Proceedings of the Physical Society, 1955, 68 (12), 1113. 39 Lee H, Vashaee D, Wang D Z, et al. Journal of Applied Physics, 2010, 107 (9), 094308. 40 Zhao M, Pan W, Wan C, et al. Journal of the European Ceramic Society, 2017, 37 (1), 1. 41 Hu F, Hu Z, Liu Y, et al. Journal of the American Chemical Society, 2023, 145, 50, 27718. 42 Jin F, Nguyen H L, Zhong Z, et al. Journal of the American Chemical Society, 2022, 144 (4), 1539. 43 Yu B, Li W, Wang X, et al. Journal of the American Chemical Society, 2023, 145 (46), 25332. 44 Liu Y, Ma Y, Yang J, et al. Journal of the American Chemical Society, 2018, 140 (47), 16015. 45 Hopkins P E, Kaehr B, Piekos E S, et al. Journal of Applied Physics, 2012, 111 (11), 113532. 46 Erickson K J, Léonard F, Stavila V, et al. Advanced Materials, 2015, 27 (22), 3453. 47 Xie X, Li D, Tsai T H, et al. Macromolecules, 2016, 49 (3), 972. 48 Jia S, Liu Y, Hao L, et al. Journal of the American Chemical Society, 2023, 145 (48), 26266. 49 Tao X, Wang Z, Zhang Q P, et al. Journal of the American Chemical Society, 2023, 145 (46), 25471. 50 Zhou T, Wu X, Deng T, et al. Journal of Materials Chemistry A, 2023, 11, 15821. 51 Wang L, Dong B, Ge R, et al. ACS Applied Materials & Interfaces, 2017, 9 (8), 7108. 52 Chumakov Y, Aksakal F, Dimoglo A, et al. Journal of Electronic Mate-rials, 2016, 45 (7), 3445. 53 Chumakov Y, Bayram G. Journal of Electronic Materials, 2020, 49 (9), 5498. 54 Li C, Ma Y, Tian Z. ACS Macro Letters, 2018, 7 (1), 53. 55 Li C, Ma H, Li T, et al. Nano Letters, 2021, 21 (9), 3708. 56 Duncan R A, Romano G, Sledzinska M, et al. Journal of Applied Phy-sics, 2020, 128 (23), 235106. 57 Vega-Flick A, Pech-May N W, Cervantes-Alvarez F, et al. Journal of Applied Physics, 2018, 124 (8), 085101. 58 Ma T, Kapustin E A, Yin S X, et al. Science, 2018, 361 (6397), 48. 59 Peng L, Guo Q, Song C, et al. Nature Communications, 2021, 12 (1), 5077. |
|
|
|