INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Acoustic Source Localization Method for Lining Cracking of Tunnel Based on Array Signal Processing in Space-frequency Domain |
WANG Yunxiao1, LIU Yuanxue1,2,*, YAO Weilai1, MU Rui1, GONG Hongwei1
|
1 Army Logistics Academy of PLA, Chongqing 401311, China 2 Chongqing Key Laboratory of Failure Mechanism and Protection of Facility in Plateau and Mountain Environment, Chongqing 401311, China |
|
|
Abstract Real-time monitoring of cracks plays a vital role in the long-term stability and normal operation of tunnels. It is conducive to the early warning and prevention of tunnel diseases. This work presents a new localization method based on the relationship between the phase difference in the frequency domain of array signal and the azimuth in the spatial domain of sound source. The sound wave generated by lining cracking radiates into the tunnel with the cracking point as the spherical center. The phase difference of the sound signal arriving at the triangle pyramid sensor array is linearly related to the frequency. And the slope is the trigonometric function of the orientation of sound source. The phase difference at multiple frequencies can be obtained in view of the wide frequency characteristics of the sound wave of the lining cracking. The slope can be obtained by linear fitting, and then the orientation of the sound source can be determined. Its three-dimensional coordinates can be determined by the intersection of the azimuth vector and the lining surface. After simulating the sound waves emitted by cracking in the lining of a straight wall arch tunnel under reverberate and noisy condition, the proposed method achieves high positioning accuracy. The numerical simulation of crack localization in Huilongshan tunnel and the field test of a straight wall arch tunnel verify that the proposed method can effectively monitor the crack length and expansion direction of the lining cracks.
|
Published: 25 October 2024
Online: 2024-11-05
|
|
Fund:National Natural Science Foundation of China (41877219), the Academician Special Project of Natural Science Foundation of Chongqing (cstc2021yszx-jcyjX0002, CSTB2023YSZX-JCX0004) and the Chongqing Graduate Student Research Innovation Project (CYB22296). |
|
|
1 Liu Y, Wang P Y, Wang S H, et al. Journal of Northeastern University (Natural Science), 2019, 40(8), 1185 (in Chinese). 刘宇, 王鹏宇, 王述红, 等. 东北大学学报(自然科学版), 2019, 40(8), 1185. 2 Ren S, Zhu Q W, Tu X Y, et al. Journal of Zhejiang University (Engineering Science), 2022, 56(1), 92. 3 Tao J, Zhu X H, Zheng Y H. Tunnel Construction, 2022, 42(6), 1091 (in Chinese). 陶杰, 朱熙豪, 郑于海. 隧道建设(中英文), 2022, 42(6), 1091. 4 Xie X Y, Wang H Z, Zhou B, et al. Chinese Journal of Underground Space and Engineering, 2022, 18(3), 1025 (in Chinese). 谢雄耀, 王皓正, 周彪, 等. 地下空间与工程学报, 2022, 18(3), 1025. 5 Wang J F, Qiu Y, Liu S Z. Journal of Zhejiang University (Engineering Science), 2022, 56(7), 1404. 6 Li T B, Xu W H, Ma C C, et al. Chinese Journal of Rock Mechanics and Engineering, https://doi.org/10.13722/j.cnki.jrme.2023.0433(in Chinese). 李天斌, 许韦豪, 马春驰, 等. 岩石力学与工程学报, https://doi.org/10.13722/j.cnki.jrme.2023.0433. 7 Han T R, Wu G, Lu Y. Measurement, 2021, 179(4), 109461. 8 Yang J, Zhang K, Cheng L, et al. Piezoelectrics & Acoustooptics, 2019, 41(4), 481(in Chinese). 杨杰, 张凯, 程琳, 等. 压电与声光, 2019, 41(4), 481. 9 Zhao J B, Liu Y X, Yang J T, et al. Rock and Soil Mechanics, 2020, 41(12), 4116 (in Chinese). 赵久彬, 刘元雪, 杨骏堂, 等. 岩土力学, 2020, 41(12), 4116. 10 Zhao J B, Liu Y X, Liu C J, et al. Journal of Central South University, 2021, 28(3), 816. 11 Zhao, J B, Liu, Y X, Yang, J T. Bulletin of Engineering Geology and the Environment, 2021, 80(2), 889. 12 Zheng H G, Li Z J, Huang J S, et al. Progress in Geophysics, 2023, 38(1), 122(in Chinese). 郑海刚, 黎哲君, 黄金水, 等. 地球物理学进展, 2023, 38(1), 122. 13 Szuberla, C. Olson, J. Arnoult, K. Journal of the Acoustical Society of America, 2009, 126(5), EL112. 14 Bai Y S, Liu Y X, Gao G J, et al. Instruments and Experimental Techniques, 2022, 66(1), 156. 15 Ham S, Popovics J S. Automation in Construction, 2015, 58(OCT.), 155. 16 Tang S B, Liu Y H, Xu H R, et al. Journal of Central South University, 2023, 30(12), 4182. 17 Zhao G F, Luo D N, Su G S, et al. Applied Acoustics, 2022, 191, 108671. 18 Du G H, Zhu Z M, Gong X F. Fundamentals of acoustics, Nanjing University Press, Nanjing, 2001, pp.309 (in Chinese). 杜功焕, 朱哲明, 龚秀芬. 声学基础, 南京大学出版社, 2001, pp.309. 19 Li Z. Shanxi Architecture. 2010, 36(21), 342 (in Chinese). 李柱. 山西建筑, 2010, 36(21), 342. 20 Cheng C, Liu S Y, Wu, H Z, et al. Signal Processing:the Official Publication of the European Association for Signal Processing (EURASIP), 2023, 208, 108988. 21 Hu, Y G, Abhayapala, T D, Samarasinghe P N. IEEE-ACM Transactions on Audio Speech and Language Processing, 2021, 29, 253. 22 Lu F, Zhao H K, Zhao X R, et al. Electronics, 2022, 11(12), 1916. 23 Su X L, Liu Z, Sun B, et al. Journal of Systems Engineering and Electronics, 2022, 33(2), 269. 24 Xiao D H, He T, Pan Q, et al. Ultrasonics, 2014, 54(2), 737. 25 Li Q C, He S G. China Earthquake Engineering Journal, 2019, 41(1), 138 (in Chinese). 李启成, 何书耕. 地震工程学报, 2019, 41(1), 138. 26 Jiang Z W, Chen H, Liu W, et al. Signal Processing, 2022, 201(108735), 1. 27 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Specification for mix proportion design of ordinary concrete. China Architecture & Building Press, China, 2011, pp.11(in Chinese). 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程, 中国建筑工业出版社, 2011, pp.11. 28 Kim K, Cho H, Sohn D, et al. Construction and Building Materials, 2021, 272(11), 1. 29 Zhong Z, Zhang H, Hu Y J, et al. Measurement, 2023, 206, 112335. 30 Haider N S. Biomedical Signal Processing and Control, 2021, 64(102313), 1. |
No related articles found! |
|
|
|
|