NEW HIGH-PERFORMANCE MAGNESIUM PHOSPHATE CEMENTITIOUS MATERIAL |
|
|
|
|
|
Research Progress on High-temperature Performance of Magnesium Phosphate Cement |
LI Xiao, ZHAO Yingying, ERBUDUREXITI Guliziba, JIA Xingwen*, QIAN Jueshi
|
School of Materials Science and Engineering, Chongqing University, Chongqing 400045, China |
|
|
Abstract Magnesium phosphate cement (MPC) with excellent high-temperature performance has good application prospects not only in steel structure protection, radioactive and hazardous waste solidification fields, but also in high-temperature scenarios such as high-end equipment thermal protection and aircraft thermal barrier coatings. The paper summarizes the hydration mechanism of MPC and its physical and mechanical properties at high temperatures, as well as the evolution law of hydration products. Then the basic research progress and existing problems of the application of MPC in steel structure fire prevention, radioactive and hazardous waste solidification are summarized, and the suggestions for further improving the high-temperature performance of MPC are proposed from three main directions, including insulation performance, mechanical performance, and high-temperature volume stability, so as to provide reference for promoting the practical application of MPC in high-temperature scenarios.
|
Published: 10 September 2024
Online: 2024-09-30
|
|
Fund:National Natural Science Foundation of China (52072049). |
|
|
1 Prosen E M. U. S. patent, 2152152, 1939. 2 Stierli R F, Tarver C C, Gaidis J M. U. S. patent, 3960580, 1976. 3 Jiang H L, Zhang J W, Li T, et al. Construction and Building Materials, 2022, 326, 126821. 4 Liu F, Pan B F, Zhou C J. Journal of Materials in Civil Engineering, 2022, 34(3), 04021483. 5 Chen B, Oderji S Y, Chandan S, et al. Construction and Building Materials, 2017, 154, 270. 6 Zhang Q S, Cao X, Ma R, et al. Construction and Building Materials, 2021, 297, 123761. 7 Zhang Y Y, Wan Z H, Wang L, et al. Environmental Science & Technology, 2022, 56(13), 9398. 8 Dai F L, Ding J H, Wang H T, et al. Acta Scientiae Circumstantiae, 2017, 37(5), 1819 (in Chinese). 戴丰乐, 丁建华, 汪宏涛, 等. 环境科学学报, 2017, 37(5), 1819. 9 Wagh A S. International Scholarly Research Notices, 2013, 2013, 983731. 10 Jun L, Yongsheng J, Linglei Z, et al. Construction and Building Materials, 2019, 195, 156. 11 Sugama T, Kukacka L E. Cement and Concrete Research, 1983, 13(3), 407. 12 Gardner L J, Corkhill C L, Walling S A, et al. Cement and Concrete Research, 2021, 143, 106375. 13 Gardner L J, Walling S A, Lawson S M, et al. Inorganic Chemistry, 2020, 60(1), 195. 14 Lahalle H, Coumes C C D, Mesbah A, et al. Cement and Concrete Research, 2016, 87, 77. 15 Fedorocková A, Raschman P. Chemical Engineering Journal, 2008, 143(1-3), 265. 16 Fruhwirth O, Herzog G W, Hollerer I, et al. Surface Technology, 1985, 24(3), 301. 17 Viani A, Peréz-Estébanez M, Pollastri S, et al. Cement and Concrete Research, 2016, 79, 344. 18 Soudée E, Péra J. Cement and Concrete Research, 2000, 30(2), 315. 19 Holt S A, Jones C F, Watson G S, et al. Thin Solid Films, 1997, 292(1-2), 96. 20 Wagh A S, Jeong S Y. Journal of the American Ceramic Society, 2003, 86(11), 1838. 21 Viani A, Gualtieri A F. Cement and Concrete Research, 2014, 58, 56. 22 Dai F L, Wang H T, Jiang Z C, et al. Chinese Journal of Materials Research, 2018, 32(4), 247 (in Chinese). 戴丰乐, 汪宏涛, 姜自超, 等. 材料研究学报, 2018, 32(4), 247. 23 Le Rouzic M, Chaussadent T, Platret G, et al. Cement and Concrete Research, 2017, 91, 117. 24 Xu B W, Lothenbach B, Leemann A, et al. Cement and concrete research, 2018, 108, 140. 25 Ding Z, Dong B Q, Xing F, et al. Ceramics International, 2012, 38(8), 6281. 26 Viani A, Sotiriadis K, Sasek P, et al. Ceramics International, 2016, 42(14), 16310. 27 Neiman R, Sarma A C. Journal of dental research, 1980, 59(9), 1478. 28 Qoku E, Scheibel M, Bier T, et al. Construction and Building Materials, 2021, 272, 121654. 29 Lai Z Y. Immobilization of medium and low level radioactive wastes by magnesium phosphate cement. Ph.D. Thesis, Chongqing University, China, 2012 (in Chinese). 赖振宇. 磷酸镁水泥固化中低放射性废物研究. 博士学位论文, 重庆大学, 2012. 30 Jiang Z C, Qi Z Q, Li S, et al. Contemporary Chemical Industry, 2016, 45(11), 2541 (in Chinese). 姜自超, 齐召庆, 李帅, 等. 当代化工, 2016, 45(11), 2541. 31 Chen X, Chen S K, Yan D M, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(3), 1031 (in Chinese). 陈新, 陈士堃, 闫东明, 等. 硅酸盐通报, 2022, 41(3), 1031. 32 You C. Hydration and hardening of magnesium phosphate cement and stability of hydration products. Ph.D. Thesis, Chongqing University, China, 2017 (in Chinese). 尤超. 磷酸镁水泥水化硬化及水化产物稳定性. 博士学位论文, 重庆大学, 2017. 33 Dai X B, Ren W X, Qin J H, et al. Construction and Building Materials, 2023, 376, 131015. 34 Lai Z Y, Qian J S, Lu Z Y, et al. Journal of Functional Materials, 2012, 43(15), 2065 (in Chinese). 赖振宇, 钱觉时, 卢忠远, 等. 功能材料, 2012, 43(15), 2065. 35 Yang J M, Qian C X. Journal of Wuhan University of Technology-Materials Science Edition, 2010, 25(4), 613. 36 Luo W Z. The process of using industrial-grade monoammonium phosphate to product food-grade potassium polyphosphate. Master's Thesis, Wuhan Instituteof Technology, China, 2017 (in Chinese). 骆万智. 工业级磷酸一铵制备食品级聚偏磷酸钾的工艺研究. 硕士学位论文, 武汉工程大学, 2017. 37 Hipedinger N E, Scian A N, Aglietti E F. Cement and Concrete Research, 2004, 34(1), 157. 38 Pan Y, Zhao H T. Journal of Applied Polymer Science, 2018, 135(32), 46583. 39 Li Z, Qin J H, You C, et al. Journal of the Chinese Ceramic Society, 2019, 47(11), 1559 (in Chinese). 李振, 秦继辉, 尤超, 等. 硅酸盐学报, 2019, 47(11), 1559. 40 Feng H, Sheikh M N, Hadi M N S, et al. Construction and Building Materials, 2018, 185, 648. 41 Dong Y H. Anti-corrosion effect of magnesium phosphate cement coating on carbon steel. Master's Thesis, Southwest Jiaotong University, China, 2017 (in Chinese). 董英豪. 碳钢表面磷酸镁水泥涂层的防腐性研究. 硕士学位论文, 西南交通大学, 2017. 42 Tang H, Qian J S, Ji Z W, et al. Construction and Building Materials, 2020, 255, 119422. 43 Fan Y R. Study on bond properties of magnesium phosphate cement based materials. Ph. D. Thesis, Chongqing University, China, 2016, (in Chinese). 范英儒. 磷酸镁水泥基材料的修补粘结性能研究. 博士学位论文, 重庆大学, 2016. 44 Wagh A S. Chemically bonded phosphate ceramics:Twenty-first century materials with diverse applications, Elsevier, NL, 2016, pp.59. 45 Shao X Y. Study on the preparation of magnesium-potassium phosphate cement fireproof coatings for steel structure. Master's Thesis, Fuzhou University, China, 2017 (in Chinese). 邵晓燕. 磷酸钾镁水泥基钢结构防火涂料的制备研究. 硕士学位论文, 福州大学, 2017. 46 Wen J. Structural desing and fire performance evaluation of MKPC based fire retardant coatings for steel structures. Master's Thesis, AnHui University of Science and Technology, China, 2020 (in Chinese). 温婧. Mkpc基钢结构防火涂料组成结构设计及其防火性能评价. 硕士学位论文, 安徽理工大学, 2020. 47 Dai X B, Qian J S, Qin J H, et al. Materials, 2022, 15(12), 4134. 48 Fu M J. Solidification simulated high level liquid waste by magnesium phosphate cement. Master's Thesis, Chongqing University, China, 2018 (in Chinese). 傅明娇. 磷酸镁水泥固化模拟高放核废液. 硕士学位论文, 重庆大学, 2018. 49 Paraskevoulakos C, Stitt C A, Hallam K R, et al. Construction and Building Materials, 2019, 215, 90. 50 Fu M J, Yang H L, Wu C M, et al. Materials Reports, 2017, 31(24), 86 (in Chinese). 傅明娇, 杨海林, 吴传明, 等. 材料导报, 2017, 31(24), 86. 51 Cao J S. Bulletin of the Chinese Ceramic Society, 2017, 36(4), 1452 (in Chinese). 曹集舒. 硅酸盐通报, 2017, 36(4), 1452. 52 Yang H L. Study on the application of magnesium potassium phosphate cement in emergency solidification of high level liquid waste. Ph.D. Thesis, Chongqing Uinversity, China, 2020 (in Chinese). 杨海林. 磷酸钾镁水泥用于高放废液应急固化的研究. 博士学位论文, 重庆大学, 2020. 53 Huang C C. Solidification simulated high level liquid waste by magnesium phosphate cement. Master's Thesis, Southwest University of Science and Technology, China, 2016 (in Chinese). 黄陈程. 磷酸镁水泥固化模拟高放废液. 硕士学位论文, 西南科技大学, 2016. 54 Zhu A Y, Wu H L, Wang Y D, et al. Construction and Building Materials, 2023, 400, 132692. 55 Zhuang J P, Xu R X, Lin P F, et al. Theoretical and Applied Fracture Mechanics, 2023, 124, 103765. 56 Jiang Z C, Wang H T, Dai F L, et al. New Building Materials, 2017, 44(2), 82 (in Chinese). 姜自超, 汪宏涛, 戴丰乐, 等. 新型建筑材料, 2017, 44(2), 82. 57 Jia G H, Li Z, Liu P, et al. Journal of Non-Crystalline Solids, 2018, 482, 192. 58 Lin Y F, Li X G, Huang Q H. Energy and Buildings, 2021, 231, 110637. 59 Cirstea N F, Badanoiu A I, Voicu G, et al. Journal of Building Engineering, 2023, 76, 107345. 60 Fang Y, Yin X, Cui P, et al. Construction and Building Materials, 2021, 293, 123513. 61 Chen S N, Lin C, Hsu H L, et al. Materials, 2022, 15(15), 5317. 62 Gardner L, Lejeune V, Corkhill C, et al. Advances in Applied Ceramics, 2015, 114(7), 386. 63 Gardner L J, Walling S A, Corkhill C L, et al. Cement and Concrete Research, 2021, 141, 106332. 64 Yu J C, Qian J S, Chen H X, et al. Construction and Building Materials, 2023, 401, 132932. 65 Zhang X, Li G X, Niu M D, et al. Construction and Building Materials, 2018, 175, 768. 66 Gao X J, Zhang A L, Li S X, et al. Materials and Structures, 2016, 49, 3423. 67 Yang Y Q, Liu Y, Yan Z Z, et al. Materials, 2022, 15(24), 8967. 68 Yang Z H, Liu S J, Wu K, et al. Materials Reports, 2023, 37(1), 118 (in Chinese). 杨正宏, 刘思佳, 吴凯, 等. 材料导报, 2023, 37(1), 118. 69 Fang Y, Cui P, Ding Z, et al. Construction and Building Materials, 2018, 162, 553. |
[1] |
WANG Zijian, SUN Shulei, XIAO Han, RAN Xudong, CHEN Qiang, HUANG Shuhai, ZHAO Yaobang, ZHOU Li, HUANG Yongxian. Research Status of Additive Friction Stir Deposition[J]. Materials Reports, 2024, 38(9): 22100039-16. |
|
|
|
|