INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Growth of Monolayer Tungsten Diselenide via Liquid Precursor Chemical Vapor Deposition |
AN Boxing1,2,*, WANG Yajie1,2, XIAO Yonghou1,2,*, CHU Feihong3
|
1 Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, Liaoning, China 2 School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China 3 Hebei Vocational University of Technology and Engineering, Xingtai 054000, Hebei, China |
|
|
Abstract Chemical vapor deposition (CVD) is a straightforward and efficient technology used for preparing two-dimensional (2D) transition metal chalcogenides (TMDs). However, the random distribution of nucleus position andpoor growth controllability are currently a great challenge to achieve large scale, high quality TMDs preparation. In this study, taked the growth of monolayer tungsten diselenide (WSe2) as an example. Utilized a liquid phase precursor and adjusted its concentration to prompt the trace metal precursor evenly disperse on the surface of the growth substrate. This approach should reduce nucleation density effectively, and induced low saturation. it’s helpful to successfully formate a monolayer WSe2 with uniform component distribution and high quality. This liquid precursor CVD technique introduced here can be extended to the growth of other 2D materials, and offer a more practical approach for achieving large area, uniform, and high-quality 2D materials.
|
Published: 25 December 2024
Online: 2024-12-20
|
|
Fund:National Natural Science Foundation of China (21776028) and the Natural Science Foundation of Hebei Province (A2023108002). |
|
|
1 Wang D S, Zhou Y, Zhang H, et al. Inorganic Chemistry, 2020, 59(23), 17356. 2 Xie C, Mak C, Tao X, et al. Advanced Functional Materials, 2016, 27, 1603886. 3 Liu R, Wang F K, Liu L X, et al. Small Structures, 2020, 2, 2000136. 4 Chaves A, Azadani J G, Alsalman H, et al. nap 2D Materials and Applications, 2020, 4, 29. 5 Mak K F, Shan J. Nature Photonics, 2016, 10, 216. 6 Manzeli S, Ovchinnikov D, Pasquier D, et al. Nature Reviews Materials, 2017, 2, 17033. 7 Tan C L, Cao X H, Wu X J, et al. Chemical Reviews, 2017, 117(9), 6225. 8 Zhang H. ACS Nano, 2015, 9, 9451. 9 Gusakova J, Wang X, Shiau L L, et al. Physica Status Solidi A, 2017, 214, 1700218. 10 Zhang Z W, Liu Y, Dai C, et al. Chemistry of Materials, 2021, 33, 1307. 11 Di J, Xia J, Li H, et al. Nano Energy, 2017, 35, 79. 12 Bersch B M, Eichfeld S M, Lin Y C, et al. 2D Materials, 2017, 4, 025083. 13 Cai J, Han X, Wang X, et al. Matter, 2020, 2, 587. 14 Cai Z, Liu B, Zou X, et al. Chemical Reviews, 2018, 118, 6091. 15 Kim S Y, Kwak J, Ciobanu C V, et al. Advanced Materials, 2019, 31, 1804939. 16 Özden A, Ay F, Sevik C, et al. Japanese Journal of Applied Physics, 2017, 56, 06GG05. 17 Mahyavanshi R D, Kalita G, Sharma K P, et al. Applied Surface Science, 2017, 409, 396. 18 Huang J K, Pu J, Hsu C L, et al. ACS Nano, 2014, 8, 923. 19 Li S, Wang S, Tang D M, et al. Applied Materials Today, 2015, 1, 60. 20 Han A, Aljarb A, Liu S, et al. Nanoscale Horizons, 2019, 4(6), 1434. 21 Park S, Yun S J, Kim Y I,et al. ACS Nano, 2020, 14, 8784. 22 Kim M, Seo J, Kim J, et al. ACS Nano, 2021, 15, 3038. 23 Eichfeld S M, Colon V O, Nie Y, et al. 2D Materials, 2016, 3, 025015. 24 Lee J, Pak S, Giraud P, et al. Advanced Materials, 2017, 29, 1702206. 25 Qin Z, Loh L, Wang J Y, et al. ACS Nano, 2019, 13, 10768. 26 Choi S H, Stephen B, Park J H, et al. Scientific Reports, 2017, 7, 1983. 27 Fan S, Yun S J, Yu W J, et al. Advanced Science, 2020, 7, 1902751. 28 Huang J, Yang L, Liu D, et al. Nanoscale, 2015, 7, 4193. 29 Yun S J, Kim S M, Kim K K, et al. Current Applied Physics, 2016, 16, 1216. 30 Zhou J D, Lin J H, Huang X W, et al. Nature, 2018, 556, 355. 31 Chen J Y, Liu B, Liu Y P, et al. Advanced Materials, 2015, 27, 6722. 32 Chen M R, Zhang A Y, Liu Y H, et al. Nano Research, 2020, 13(10), 2625. |
|
|
|