INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Numerical Simulation of Welding Nail Corrosion on Rust Expansion and Cracking Behavior of Concrete Slab and Analysis of Related Influencing Parameters |
LIN Pengzhen1,*, YU Bo2, HE Zhigang3
|
1 School of Civil Engineering, Lan Zhou Jiaotong University, Lanzhou 730070, China 2 Gansu Provincial Key Laboratory of Road Bridge and Underground Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 3 School of Architecture and Urban Planning, Lanzhou Jiaotong University, Lanzhou 730070, China |
|
|
Abstract To investigate the cracking behavior of concrete resulting from rust expansion of anchor bolt components in a corrosive environment within reinforced concrete composite beams, a local rust expansion model of anchor bolts was established using the cohesive force model theory and global insertion of cohesive elements. Analyzed anchor bolt parameters such as position, diameter, spacing, and then examined their impacts on the distribution of rust expansion forces, characteristics of resulting cracks, and the overall cracking process in concrete. The findings indicated that an increased anchor bolt diameter should lead to a reduction in rust expansion force at the initial cracking stage. Specifically, augmenting the anchor bolt diameter from 16 mm to 25 mm resulted in an 82% decrease of the rust expansion force at the onset of initial cracking. When the longitudinal and transverse spacing ratio of anchor bolts is greater than 2, multiple diagonal cracks emerged in the horizontal direction of the edge. The finite element model with global insertion of cohesive elements effectively simulates the rust expansion and cracking process.
|
Published: 25 December 2024
Online: 2024-12-20
|
|
Fund:Scientific Research Project of Gansu Provincial Department of Transportation (2022-26), Gansu Provincial Key Research and Development Plan-Industrial Project (23YFGA0042), Central Government Guide Local Science and Technology Development Fund Project (22ZY1QA005). |
|
|
1 Kuang Yachuan, Chen Libin, LI Chaoju et al. Journal of Jilin University (Engineering Science), 2023 53(2), 538 (in Chinese). 匡亚川, 陈立斌, 李超举, 等. 吉林大学学报(工学版), 2023, 53(2), 538. 2 Xu Bo, Liu Yongjian, ZHU Weiqing, et al. Journal of Traffic and Transportation Engineering, 2019, 19(2), 25 (in Chinese). 许波, 刘永健, 朱伟庆, 等. 交通运输工程学报, 2019, 19(2), 25. 3 Jin Weiliang, Yuan Yinshu, Wei Jun, et al. Durability theory and design method of concrete structure in chloride environment, Science Press, China, 2011 (in Chinese). 金伟良, 袁迎曙, 卫军, 等. 氯盐环境下混凝土结构耐久性理论与设计方法, 科学出版社, 2011. 4 Wang Hailong, Jin Weiliang, Sun Xiaoyan. Journal of Hydraulic Engineering, 2008(7), 863 (in Chinese). 王海龙, 金伟良, 孙晓燕. 水利学报, 2008(7), 863. 5 Xu Yidong, Zheng Yingying, Du Kun. Journal of Southeast University (Natural Science Edition), 2017, 47(2), 356(in Chinese). 徐亦冬, 郑颖颖, 杜坤. 东南大学学报(自然科学版), 2017, 47(2), 356. 6 Fang Jianke, Xu Yidong, Xu Lifeng, et al. Chinese Journal of Ceramics, 2018, 37(10), 3275(in Chinese). 方建柯, 徐亦冬, 徐立锋, 等. 硅酸盐通报, 2018, 37(10), 3275. 7 Liu Ronggui, Yu Mengxiong. Journal of Jiangsu University(Natural Science Edition), 2016, 37(2), 219 (in Chinese). 刘荣桂, 喻孟雄. 江苏大学学报(自然科学版), 2016, 37(2), 219. 8 Jin Bo, Sun Nan, Fang Qihong. Chinese Journal of Solid Mechanics, 2022, 43(4), 456 (in Chinese). 金波, 孙楠, 方棋洪. 固体力学学报, 2022, 43(4), 456. 9 Du Xiu li, Jin Liu. Chinese Journal of Computational Mechanics, 2015, 32(6), 772 (in Chinese). 杜修力, 金浏. 计算力学学报, 2015, 32(6), 772. 10 Hu Zhijian, Xia Leilei, Cheng Chen. Journal of Harbin Institute of Technology, 2020, 52(3), 99 (in Chinese). 胡志坚, 夏雷雷, 程晨. 哈尔滨工业大学学报, 2020, 52(3), 99. 11 Xiao Lin, Wei Huanbo, Wei Xing. Journal of Jilin University(Engineering and Technology Edition) 2023, 54(7), 1958 (in Chinese). 肖林, 魏欢博, 卫星. 吉林大学学报(工学版), 2023, 54(7), 1958. 12 Jin H, Yu S. Construction and Building Materials, 2022, 318, 126173. 13 Wu Yingyao. Research on two-stage rust-crack Theory and Crack Development of Concrete Structure. Master’s Thesis, Zhejiang University, china, 2014(in Chinese). 吴瑛瑶. 混凝土结构锈裂二阶段理论及裂缝开展研究. 硕士学位论文, 浙江大学, 2014. 14 Zhao Y, Ren H, DaI H, et al. Corrosion Science, 2011, 53(5), 1646. 15 Duan Hongyan, Wang Zhiming, Sang Yuancheng Shanghai Jiaotong Univ(Sci), 2017, 51(1), 113 (in Chinese). 段红燕, 王智明, 桑元成. 上海交通大学学报(自然版), 2017, 51(1), 113. 16 Burgold A, Roth S, Kuna M. Key Engineering Materials, 2018, 774, 167. 17 Xie Hao, Sun Xiaotong, Men Yangqing. Journal of Northwestern Polytechnical University, 2022, 40(1), 175(in Chinese). 谢浩, 孙晓彤, 门燕青. 西北工业大学学报, 2022, 40(1), 175. 18 Alfano G. Composites Science & Technology, 2006, 66(6), 723. 19 Yang Zhen-jun, Huang Yu-jie, Yao Feng. Engineering Mechanics, 2020, 37(8), 158 (in Chinese). 杨贞军, 黄宇劼, 尧锋. 工程力学, 2020, 37(8), 158. 20 Benzeggagh M L, Kenane M. Composites Science and Technology, 1996, 56(4), 439. 21 Wang Yanlei, Sun Hujie, Cao Mingmin. Journal of Building Structures, 2015, 36(S1), 355 (in Chinese). 王言磊, 孙会杰, 曹明敏. 建筑结构学报, 2015, 36(S1), 355. 22 Wang Qiaoping, Wu Shengxing, Wang Xiaohua. Industrial Construction, 2005, 35(3), 4(in Chinese). 王巧平, 吴胜兴, 王晓华. 工业建筑, 2005, 35(3), 4. 23 Zhongjiao Highway planning and Design Institute Co. , LTD. Code for Design and Construction of highway steel-concrete composite bridges, China Communications Press, China, 2015(in Chinese). 中交公路规划设计院有限公司. 公路钢混组合桥梁设计与施工规范. 人民交通出版社, 2015. |
|
|
|