POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Flexible Three-dimensional Force Sensors |
ZENG Jiantao1,2, WANG Yong1,2, JIANG Guoquan1,2, ZHANG Yuanxiang1,*
|
1 College of Mechanical Engineering, Quzhou University, Quzhou 324000, Zhejiang, China 2 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China |
|
|
Abstract Flexible sensor is an important component of flexible wearable electronic devices, which have attracted great attention due to their wide applications in many emerging areas including health-monitoring, human-machine interaction and smart robots. Conventional single-axis pressure sensors are not sufficient for the demands of complex and advanced intelligent systems, while flexible three-dimensional force sensors with unique multi-axis and all-around mechanical detection capabilities have become a popular topic. To achieve the goal of developing the flexible three-dimensional force sensors with high performance, it is necessary to consider multiple factors such as sensing mechanism, structural design, material, and decoupling method. In recent years, many researchers have dedicated to the design and fabrication of high performance flexible three-dimensional force sensors, including innovations in structure design and novel materials, improvement of data processing and machine learning algorithms. These multiple innovations are driving further development in these areas. This article aims to outline the research progress of flexible three-dimensional force sensors. Firstly, various sensing mechanisms of flexible three-dimensional force sensors have been introduced and their characteristics have been analyzed and compared. Additionally, progress in structural design, material, decoupling method, and their interrelationship as well as the applications in the related fields, containing intelligent robot arms, motion detection, human-machine interaction, and wireless health monitoring are summarized. Finally, the current challenges of flexible three-dimensional force sensor are analyzed, and its future development is prospected.
|
Published: 10 August 2024
Online: 2024-08-29
|
|
Fund:National Natural Science Foundation of China (51605252), Science and Technology Plan Project of Quzhou (2022K92). |
|
|
1 Wang Y, Yang B, Hua Z, et al. Journal of Physics D:Applied Physics, 2021, 55(13), 134001. 2 Wang C, Xia K, Wang H, et al. Advanced Materials, 2019, 31(9), 1801072. 3 Chao M, Di P, Yuan Y, et al. Nano Energy, 2023, 108, 108201. 4 Yin R, Wang D, Zhao S, et al. Advanced Functional Materials, 2021, 31(11), 2008936. 5 Zhang H, Zhang D, Wang Z, et al. ACS Applied Materials & Interfaces, 2023, 15(4), 5128. 6 Zhong F, Hu W, Zhu P, et al. Opto-Electronic Advances, 2022, 5(8), 210029-1. 7 Suen M S, Lin Y C, Chen R. Sensors and Actuators A:Physical, 2018, 269, 574. 8 Xu Z, Zhang D, Li Z, et al. ACS Applied Materials & Interfaces, 2023, 15(27), 32569. 9 Liu Q, Liu Y, Shi J, et al. Nano-Micro Letters, 2022, 14, 1. 10 Yang M, Cheng Y, Yue Y, et al. Advanced Science, 2022, 9(20), 2200507. 11 Guo X, Xing T, Feng J. ACS Applied Nano Materials, 2022, 5(12), 18427. 12 Zhang C, Li Z, Li H, et al. ACS Applied Materials & Interfaces, 2022, 14(33), 38328. 13 Li Y, Liu Y, Bhuiyan S R A, et al. Small Structures, 2022, 3(2), 2100131. 14 Xu D, Duan L, Yan S, et al. Micromachines, 2022, 13(5), 660. 15 Dong H, Zhang L, Wu T, et al. Organic Electronics, 2021, 89, 106044. 16 Kurup L A, Cole C M, Arthur J N, et al. ACS Applied Nano Materials, 2022, 5(2), 2973. 17 Sun P, Wu D, Liu C. Nanotechnology, 2021, 32(29), 295506. 18 Shi Y, Lü X, Wang W, et al. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1. 19 Yao T, Guo X, Li C, et al. Journal of Physics D:Applied Physics, 2020, 53(44), 445109. 20 Zhang M, Gao X, Lu C, et al. ACS Applied Materials & Interfaces, 2021, 13(46), 55735. 21 Song P, Wu D, Liu C. Advanced Materials Technologies, 2018, 4(5), 1800680. 22 Beccai L, Roccella S, Arena A, et al. Sensors and Actuators A:Physical, 2005, 120(2), 370. 23 Liu T, Inoue Y, Shibata K. In:IEEE SENSORS 2008. Lecce, 2008, pp.1513. 24 Luo Z, Tian X, Fan J, et al. Materials Reports, 2020, 34(1), 1069 (in Chinese). 骆泽纬, 田希悦, 范基辰, 等. 材料导报, 2020, 34(1), 1069. 25 Gao L, Zhu C, Li L, et al. ACS Applied Materials & Interfaces, 2019, 11(28), 25034. 26 Doshi S M, Thostenson E T. ACS Sensors, 2018, 3(7), 1276. 27 Mu C, Song Y, Huang W, et al. Advanced Functional Materials, 2018, 28(18), 1707503. 28 Viry L, Levi A, Totaro M, et al. Advanced Materials, 2014, 26(17), 2659. 29 Liu Y, Wo H, Huang S, et al. IEEE Sensors Journal, 2020, 21(2), 1378. 30 Dobrzynska J A, Gijs M A M. Journal of Micromechanics and Microengineering, 2012, 23(1), 015009. 31 Tian Y, He R, Wu J, et al. Materials Reports, 2023, 37(16), 13(in Chinese). 田玉玉, 何韧, 吴菊英, 等. 材料导报, 2023, 37(16), 13. 32 Liu W, Yu P, Gu C, et al. IEEE Sensors Journal, 2017, 17(21), 6867. 33 Yu P, Liu W, Gu C, et al. Sensors, 2016, 16(6), 819. 34 Yuan W, Dong S, Adelson E H. Sensors, 2017, 17(12), 2762. 35 Yamaguchi A, Atkeson C G. In:2016 IEEE-RAS 16th International Conference on Humanoid Robots. Cancun, 2016, pp.1045. 36 Meng H, Zhu W, Zhou L, et al. IEEE Sensors Journal, 2022, 22(4), 3595. 37 Wang H, De Boer G, Kow J, et al. Sensors, 2016, 16(9), 1356. 38 Zhang W, Xi Y, Wang E, et al. ACS Applied Materials & Interfaces, 2022, 14(17), 20122. 39 Wang Z, Bu T, Li Y, et al. ACS Applied Materials & Interfaces, 2021, 13(47), 56320. 40 Wang H, Wang W, Kim J, et al. Science Advances, 2023, 9(36), eadi2445. 41 Yeh S K, Fang W. IEEE Electron Device Letters, 2019, 40(4), 620. 42 Ren Z, Nie J, Shao J, et al. Advanced Functional Materials, 2018, 28(31), 1802989. 43 Wang Y, Wu X, Mei D, et al. Sensors and Actuators A:Physical, 2019, 297, 111512. 44 Wang S, Wang C, Lin Q, et al. Smart Materials and Structures, 2021, 30(10), 105004. 45 Sun X, Sun J, Li T, et al. Nano-micro Letters, 2019, 11, 1. 46 Chen S, Bai C, Zhang C, et al. Sensors and Actuators A:Physical, 2021, 330, 112857. 47 Thanh-Vinh N, Binh-Khiem N, Takahashi H, et al. Sensors and Actuators A:Physical, 2014, 215, 167. 48 Wang Y, Ruan X, Xing C, et al. Smart Materials and Structures, 2022, 31(9), 097001. 49 Liang G, Wang Y, Mei D, et al. Journal of Microelectromechanical Systems, 2015, 24(5), 1510. 50 Wu D, Cheng X, Chen Z, et al. Nanotechnology, 2022, 33(40), 405205. 51 Chen X, Shao J, Tian H, et al. Smart Materials and Structures, 2018, 27(2), 025018. 52 Zhang C, Zhang R, Ji C, et al. IEEE Sensors Journal, DOI:10. 1109/JSEN. 2023. 3301014. 53 Al-Mai O, Ahmadi M, Albert J. IEEE Sensors Journal, 2018, 18(17), 7005. 54 Jung Y, Lee D G, Park J, et al. Sensors, 2015, 15(10), 25463. 55 Lv Z, Song Z, Ruan D, et al. Functional Materials Letters, 2022, 15(6), 2250026. 56 Park J, Lee Y, Hong J, et al. ACS Nano, 2014, 8(5), 4689. 57 Jin W, Yu Z, Hu G, et al. Materials, 2022, 15(13), 4708. 58 Thouti E, Nagaraju A, Chandran A, et al. Sensors and Actuators A:Physical, 2020, 314, 112251. 59 Varghese H, Hakkeem H M A, Farman M, et al. Results in Engineering, 2022, 16, 100550. 60 Zhao K, Han J, Ma Y, et al. Nanomaterials, 2023, 13(4), 701. 61 Xu T, Zhu H, Dai S, et al. Measurement, 2022, 202, 111876. 62 Zhang J, Zhou L J, Zhang H M, et al. Nanoscale, 2018, 10(16), 7387. 63 Nie B, Geng J, Yao T, et al. Materials Horizons, 2021, 8(3), 962. 64 Qin Y, Zhang X, Zheng A, et al. Advanced Materials Technologies, 2022, 7(1), 2100510. 65 Zhang Y, Liu Q, Ren W, et al. Research, DOI:10. 34133/research. 0172. 21. 66 Xu D, Hu B, Zheng G, et al. Journal of Materials Science:Materials in Electronics, 2023, 34(11), 942. 67 Chen H, Jing Y, Lee J H, et al. Materials Horizons, 2020, 7(9), 2378. 68 Boutry C M, Negre M, Jorda M, et al. Science Robotics, 2018, 3(24), eaau6914. 69 Won S M, Wang H, Kim B H, et al. ACS Nano, 2019, 13(10), 10972. 70 Liu Y, Han H, Mo Y, et al. Review of Scientific Instruments, 2022, 93(8), 085006. 71 Zhang T, Liu H, Jiang L, et al. IEEE Sensors Journal, 2012, 13(2), 510. 72 Xi K, Wang Y, Mei D, et al. In:2015 IEEE International Conference on Advanced Intelligent Mechatronics. Busan, 2015, pp.476. 73 Park J, Lee Y, Hong J, et al. ACS Nano, 2014, 8(12), 12020. 74 Chandra M, Ke S Y, Chen R, et al. Sensors and Actuators A:Physical, 2017, 263, 386. 75 Wu Z, Huang T, Hou C, et al. In:2021 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale. Xi'an, 2021, pp.319. 76 Zeng X, Liu Y, Liu F, et al. Nano Energy, 2022, 92, 106777. 77 Yang J, Li X, Lü X, et al. IEEE Sensors Journal, 2018, 18(19), 7956. 78 Li F, Li S, Cao J, et al. Materials Reports, 2020, 34(1), 1059 (in Chinese). 李法利, 李晟斌, 曹晋玮, 等. 材料导报, 2020, 34(1), 1059. 79 Harada S, Kanao K, Yamamoto Y, et al. ACS Nano, 2014, 8(12), 12851. 80 Oh H, Yi G C, Yip M, et al. Science Advances, 2020, 6(46), eabd7795. 81 Yang J Y. Three-dimensional interfacial stress sensors based on graphene foam. Ph. D. Thesis, Xidian University, China, 2019 (in Chinese). 杨嘉怡. 基于石墨烯泡沫的三维界面应力传感器研究. 博士学位论文, 西安电子科技大学, 2019. 82 Zhu Y, Chen X, Chu K, et al. Sensors, 2022, 22(2), 628. 83 Yan Y, Hu Z, Yang Z, et al. Science Robotics, 2021, 6(51), eabc8801. 84 Yang J, Lü X, Li X, et al. IEEE Transactions on Electron Devices, 2018, 65(11), 5021. 85 Zhou G, Liao Z, Zhao R, et al. IEEE Sensors Journal, 2022, 22(17), 16820. 86 Wang F, Song Y. Journal of Sensors, 2021, 2021, 1. 87 Wang L Z. Research on flexible three-dimensional force tactile sensor based on the piezoresistive. Master’s Thesis, Harbin Institute of Techno-logy, China, 2016 (in Chinese). 王良泽. 基于压阻效应的柔性三维力触觉传感器的研究. 硕士学位论文, 哈尔滨工业大学, 2016. 88 Davies J, Thai M T, Hoang T T, et al. In:2023 IEEE International Conference on Robotics and Automation. London, 2023, pp.581. |
|
|
|