INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Cold-bonded Aggregate and Application in Concrete Production |
ZHAO Zengfeng1,2, PU Ziying1, LIN Can1, XIAO Jianzhuang1,2,*, YAO Lei1, JI Chenyuan1, LIU Yajie1
|
1 College of Civil Engineering, Tongji University, Shanghai 200092, China 2 Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education, Tongji University, Shanghai 200092, China |
|
|
Abstract The cold-bonded aggregate based on recycled materials has the characteristics of low density and low thermal conductivity, which becomes an important direction to partially replace the natural aggregates. Compared with the sintering method, the cold-bonded aggregates are not only an effective recycling solution for industrial wastes and by-products, but also have the advantages of low cost, low energy consumption and simple preparation, which is consistent with the low-carbon development strategy. This paper presents the preparation of cold-bonded aggregates and the influence of preparation parameters on the performance of various properties of cold-bonded aggregates. The thermal conductivity of cold-bonded aggregate is less than 1.0 W/(m·K), which has good potential to be used as a thermal insulation material. Meanwhile, the effect of cold-bonded aggregates on the performance of the concrete (including the workability, mechanical properties and durability) based on the partially replacing natural aggregates with cold-bonded aggregates is evaluated. In addition, the application of cold-bonded aggregate concrete as wall panels and other components in construction industry is given. The summary of current state-of-art and perspectives are finally presented.
|
Published: 25 October 2024
Online: 2024-11-05
|
|
Fund:National Natural Science Foundation of China (52078358). |
|
|
1 Aslam M, Shafigh P, Jumaat M Z, et al. Journal of Cleaner Production, 2016, 119, 108. 2 Shafigh P, Jumaat M Z, Mahmud H B, et al. Construction and Building Materials, 2013, 40, 231. 3 Bjegovic D, Stirmer N, Serdar M. Materials and Corrosion, 2012, 63(12), 1087. 4 Oktay H, Yumrutaş R, Akpolat A. Construction and Building Materials, 2015, 96, 217. 5 Alqahtani F K, Zafar I. Construction and Building Materials, 2020, 230(10), 116992.1. 6 Hao D L C, Abd Razak R, Kheimi M, et al. Materials, 2022, 15(11), 3929. 7 Jo B W, Park S K, Park J B. Cement and Concrete Composites, 2007, 29(2), 128. 8 Geetha S, Ramamurthy K. Journal of Cleaner Production, 2010, 18(15), 1563. 9 Chai C J, Song H P, Feng Z J, et al. Clean Coal Technology, 2020, 26(6), 11(in Chinese). 柴春镜, 宋慧平, 冯政君, 等. 洁净煤技术, 2020, 26(6), 11. 10 Li S D, Brick-Tile, 2019, 383(11), 15(in Chinese). 李寿德. 砖瓦, 2019, 383(11), 15. 11 Tajra F, Elrahman M A, Stephan D. Construction and Building Materials, 2019, 225, 29. 12 Ferraro A, Colangelo F, Farina I, et al. Critical Reviews in Environmental Science and Technology, 2020, 51(19), 2197. 13 Kim H K, Jeon J H, Lee H K. Construction and Building Materials, 2012, 29, 193. 14 Demirboğa R, Gül R. Cement and Concrete Research, 2003, 33(5), 723. 15 Li Y P, Wang W, Zhang P, et al. Journal of Hunan University(Natural Sciences), 2018, 45(6), 72(in Chinese). 李玉平, 王伟, 章鹏, 等. 湖南大学学报(自然科学版) 2018, 45(6), 72. 16 Xu G, Shi X. Resources, Conservation and Recycling, 2018, 136, 95. 17 Gao P, Xu Y Q, Cao Y, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(3), 889(in Chinese). 高鹏, 徐悦清, 曹云, 等. 硅酸盐通报, 2021, 40(3), 889. 18 Kong J J, Hu M W, Lou X G, et al. Non-Metallic Mines, 2022, 45(4), 85(in Chinese). 孔建军, 胡名卫, 楼晓刚, 等. 非金属矿, 2022, 45(4), 85. 19 Bao K Y. Study on preparation and properties of solid waste non-buring ceramsite. Master’s Thesis, Yanshan University, China, 2021(in Chinese). 保凯云. 固废免烧陶粒的制备及性能研究. 硕士学位论文, 燕山大学, 2021. 20 Zhu W X, Zhang R D, Zhou H M, et al. Sichuan Building Science. 2018, 44(6), 82(in Chinese). 朱万旭, 张瑞东, 周红梅, 等. 四川建筑科学研究, 2018, 44(6), 82. 21 Wang G, Preparation of green red mud based sintering-free ceramsites and its performance research. Master’s Thesis, Shandong University, China, 2021 (in Chinese). 王冠. 赤泥基绿色免烧结陶粒的制备试验及性能研究. 硕士学位论文, 山东大学, 2021. 22 Cao Y, Liu R, Han Y, et al. Environmental Progress & Sustainable Energy, 2020, 39(5), e13389. 23 Terzić A, Pezo L, Mitić V, et al. Ceramics International, 2015, 41(2), 2714. 24 Liu W B. Preparation of non-fired fly ash ceramsite and researchon ceramsite lightweight aggregate concrete. Master’s Thesis, Hefei University of Technology, China, 2021 (in Chinese). 刘文博. 免烧粉煤灰陶粒制备及陶粒轻骨料混凝土研究. 硕士学位论文, 合肥工业大学, 2021. 25 Sun D S, Wang A G, Hu P H. Materials Reports, 2009, 23(7), 61(in Chinese). 孙道胜, 王爱国, 胡普华. 材料导报, 2009, 23(7), 61. 26 Risdanareni P, Schollbach K, Wang J, et al. Construction and Building Materials, 2020, 259, 119832. 27 Vasugi V, Ramamurthy K. Materials & Design, 2014, 54, 264. 28 Baykal G, Doven A G. Resources Conservation and Recycling, 2000, 30(1), 59. 29 Tajra F, Elrahman M A, Chung S Y, et al. Construction and Building Materials, 2018, 179, 220. 30 Gao S Y. Preparation of high-porosity sintering-free fly ash ceramsite and its thermal insulation properties. Master’s Thesis, Guangxi University of Science and Technology, China, 2019 (in Chinese). 高淑燕. 高气孔率的免烧粉煤灰陶粒的制备及其隔热性能研究. 硕士学位论文, 广西科技大学, 2019. 31 Kockal N U, Ozturan T. Materials & Design, 2011, 32(6), 3586. 32 Gesoglu M, Ozturan T, Guneyisi E. Cement and Concrete Research, 2004, 34(7), 1121. 33 Zou S, Lu J X, Xiao J Z, et al. Construction and Building Materials, 2023, 393, 132080. 34 Arslan H, Baykal G. Environmental Geology, 2006, 50(5), 761. 35 Manikandan R, Ramamurthy K. Cement and Concrete Composites, 2007, 29(6), 456. 36 Manikandan R, Ramamurthy K. Journal of Materials in Civil Engineering, 2009, 21(10), 578. 37 Gesoğlu M, Özturan T, Güneyisi E. Construction and Building Materials, 2007, 21(9), 1869. 38 Colangelo F, Cioffi R. Materials (Basel), 2013, 6(8), 3139. 39 Arslan H, Baykal G. Environmental Geology, 2006, 50, 761. 40 Chiou I J, Wang K S, Chen C H, et al. Waste Management, 2006, 26(12), 1453. 41 Harikrishnan K I, Ramamurthy K. Waste Management, 2006, 26(8), 846. 42 Gesoğlu M, Güneyisi E, Öz H Ö. Materials and Structures, 2012, 45, 1535. 43 Kamal J, Mishra U K. Journal of the Institution of Engineers (India), Series A, 2020, 101, 735. 44 Wen J R. Process study of no-fire fly ash ceramic granules. Master’s Thesis, Chang’an University, China, 2003 (in Chinese). 温久然. 免烧粉煤灰陶粒的工艺研究. 硕士学位论文, 长安大学, 2003. 45 Manikandan R, Ramamurthy K. Cement and Concrete Composites, 2008, 30(9), 848. 46 Güneyisi E, Gesoğlu M,İpek S. Construction and Building Materials, 2013, 47, 358. 47 Zou Z X, Zhang Y, Dong Z B. Coal Conversion, 2007(2), 73(in Chinese). 邹志祥, 张瑜, 董众兵. 煤炭转化, 2007(2), 73. 48 Zhu W X, Feng L, Zhou H M, et al. Concrete, 2017(5), 59(in Chinese). 朱万旭, 酆磊, 周红梅, 等. 混凝土, 2017(5), 59. 49 Gesoğlu M, Güneyisi E, Özturan T, et al. Composites Part B:Engineering, 2014, 60, 757. 50 Peng X, Zhou Y, Jia R, et al. Construction and Building Materials, 2017, 132, 9. 51 Narattha C, Chaipanich A. Journal of Cleaner Production, 2018, 171, 1094. 52 Li X B, Ji Y Q. In:Lightweight Aggregate Industry Development and Engineering Applications - The 11th National Lightweight Aggregate and Lightweight Aggregate Concrete Symposium and the 5th Cross-Strait Lightweight Aggregate Concrete Production and Application Technology Seminary. Ningbo, China, 2012(in Chinese). 刘巽伯, 计亦奇. 轻骨料工业发展及工程应用——第十一届全国轻骨料及轻骨料混凝土学术讨论会暨第五届海峡两岸轻骨料混凝土产制与应用技术研讨会, 宁波, 2012. 53 Güneyisi E, Gesoğlu M, Pürsünlü Ö, et al. Composites Part B:Engineering, 2013, 53, 258. 54 Gong L S. Concrete, 2000(2), 7(in Chinese). 龚洛书. 混凝土, 2000(2), 7. 55 Mu L F, Li S Q, Feng J J. et al. China Concrete And Cement Products, 2019(11), 66(in Chinese). 穆龙飞, 李思琪, 冯竟竟, 等. 混凝土与水泥制品, 2019(11), 66. 56 Kockal N U, Ozturan T. Construction and Building Materials, 2011, 25(3), 1430. 57 GB/T17431. 1-2010. Lightweight aggregate and its test methods-Part1:Lightweight aggregate, Standards Press of China, China, 2010(in Chinese). GB/T17431. 1-2010. 轻集料及其实验方法第1部分:轻集料, 中国标准出版社, 2010. 58 Zhu R, Wang S Y, Zhan Y J. China Concrete and Cement Products, 2022(5), 67(in Chinese). 朱然, 王圣怡, 占羿箭. 混凝土与水泥制品, 2022(5), 67. 59 Shahane H A, Patel S. Journal of Building Engineering, DOI:10.1016/j.jobe.2020.101997. 60 Chi J M, Huang R, Yang C C, et al. Cement & Concrete Composites, 2003, 25(2), 197. 61 Zhang M H, Gjorv O E. ACI Materials Journal, 1991, 88(3), 240. 62 Bremner T W, Holm T A. Journal of the American Concrete Institute, 1986, 83(2), 244. 63 Yang C C, Huang R. Cement and Concrete Research, 1996, 26(10), 1567. 64 Bentur A, Igarashi S, Kovler K. Cement and Concrete Research, 2001, 31(11), 1587. 65 Li X G, Yan F J, Yue X T, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(11), 3407(in Chinese). 李辛庚, 闫风洁, 岳雪涛, 等. 硅酸盐通报, 2020, 39(11), 3407. 66 Wang C B, Zhang M L, Chen C, et al. Concrete, 2013, 288(10), 145(in Chinese). 王长宝, 张茂亮, 陈闯, 等. 混凝土, 2013, 288(10), 145. 67 Gomathi P, Sivakumar A. Construction and Building Materials, 2015, 77, 276. 68 Joseph G, Ramamurthy K. Materials and Structures, 2008, 42(2), 151. 69 Zhang B S, Kong L J, Yuan J, et al. Concrete, 2006(10), 24(in Chinese). 张宝生, 孔丽娟, 袁杰, 等. 混凝土, 2006(10), 24. 70 Yao W. Industrial Construction, 2005(11), 74(in Chinese). 姚武. 工业建筑, 2005(11), 74. 71 Li B, Qian X Q, Lin T L, et al. Concrete, 2022(12), 29(in Chinese). 李彪, 钱晓倩, 林天乐, 等. 混凝土, 2022(12), 29. 72 Zhang W, Yang Q B. Low Temperature Architecture Technology, 2003(5), 4(in Chinese). 张巍, 杨全兵. 低温建筑技术, 2003(5), 4. 73 Qiu J P, Liu Q, Xing J, et al. Metal Mine, 2015(7), 168(in Chinese). 邱景平, 刘骎, 邢军, 等. 金属矿山, 2015(7), 168. 74 Chia K S, Zhang M H. Cement and Concrete Research, 2002, 32(4), 639. 75 Li P F, Li L, Li Y L, et al. Building Structure, 2019, 49(S2), 617(in Chinese). 李鹏飞, 栗磊, 李亚磊, 等. 建筑结构, 2019, 49(S2), 617. 76 Qiu J S, Wang B, Guan X, et al. China Concrete and Cement Products, 2019(11), 61(in Chinese). 邱继生, 王斌, 关虓, 等. 混凝土与水泥制品, 2019(11), 61. 77 Ni Y Z, Liang R M, Ge X Y, et al. Building Structure, 2023, 53(S1), 1574(in Chinese). 倪允忠, 梁汝鸣, 葛序尧, 等. 建筑结构, 2023, 53(S1), 1574. 78 Yi C, Yan S H, Zhu H G, et al. Concrete, 2014(7), 66(in Chinese). 易成, 严事鸿, 朱红光, 等. 混凝土, 2014(7), 66. 79 Zhang G T, Liu S T, Geng T J, et al. Science Technology and Engineering, 2020, 20(29), 12078(in Chinese). 张广泰, 刘诗拓, 耿天娇, 等. 科学技术与工程, 2020, 20(29), 12078. 80 Patel J K, Patil H, Patil Y, et al. Journal of Building Engineering, 2018, 20, 616. 81 Zhang M H, Gjorv O E. Cement and Concrete Research, 1990, 20(4), 610. 82 Lo T Y, Cui H Z. Materials Letters, 2004, 58(6), 916. 83 Kockal N U, Ozturan T. Journal of Hazardous Materials, 2010, 179(1-3), 954. 84 Tajra M A E F, Stephan D. In:International Conference on Sustainable, Environmental Friendly Construction Materials, ICSEFCM. Szczecin, Poland, 2018, pp.35. 85 China Association of Building Energy Efficiency, Institute of Urban-Rural Construction and Development of Chongqing University. Construction and Architecture, 2023(2), 57(in Chinese). 中国建筑节能协会, 重庆大学城乡建设与发展研究院. 建筑, 2023(2), 57. 86 Wang H Y, Zhu Y P, Zhang S F. Jiangxi Jiancai, 2017(14), 4(in Chinese). 王海霞, 朱远平, 张邵峰. 江西建材, 2017(14), 4. 87 Lin Z H, Shi C L, Li C, et al. Chongqing Architecture, 2019, 18(3), 51(in Chinese). 林宗浩, 石从黎, 李城, 等. 重庆建筑, 2019, 18(3), 51. 88 Cavalline T L, Castrodale R W, Freeman C. ACI Materials Journal, 2017, 114, 945. 89 Liu Z C. Preparation and research of high strength light weight aggregate concrete. Master’s Thesis, Tianjin University, China, 2016 (in Chinese). 刘增晨. 高强轻集料混凝土的配制与性能研究. 硕士学位论文, 天津大学, 2016. 90 Huang W, Zhao Y, Zhu A P. Journal of Building Structures, 2019, 40(5), 80(in Chinese). 黄伟, 赵勇, 朱爱萍. 建筑结构学报, 2019, 40(5), 80. 91 Technical specification for lightweight aggregate concrete structures:JGJ 12—2006, China Architecture & Building Press, China, 2006(in Chinese). 轻骨料混凝土结构技术规程:JGJ 12—2006. 中国建筑工业出版社, 2006. 92 Gu C, Zheng X Y, Zhang W H, et al. Journal of Railway Science and Engineering, 2017, 14(3), 528(in Chinese). 顾聪, 郑晓燕, 张文华, 等. 铁道科学与工程学报, 2017, 14(3), 528. 93 Fan J Z. Wall Materials Innovation & Energy Saving in Buildings, 2005(6), 26(in Chinese). 范锦忠. 墙材革新与建筑节能, 2005(6), 26. 94 Huang X L, Bian Z H, Huang S L. Concrete, 2016, 326(12), 123(in Chinese). 黄修林, 卞周宏, 黄绍龙. 混凝土, 2016, 326(12), 123. 95 Liu J, Dong H R, Qin Y Y, et al. Chongqing Architecture, 2018, 17(7), 45(in Chinese). 刘军, 董恒瑞, 秦砚瑶, 等. 重庆建筑, 2018, 17(7), 45. 96 Li B N, The mechanical properties of cold-formed thin-walled steel skeleton-flyash ceramsite concrete wallboard study. Master’s Thesis, Jilin University, China, 2018 (in Chinese). 李贝娜. 冷弯薄壁型钢骨架—粉煤灰陶粒混凝土复合墙板力学性能研究. 硕士学位论文, 吉林大学, 2018. 97 Li C B. The study on a load-bearing, heat-retaining, sandwich composite wall without connection component. Ph D. Thesis, South China University of Technology, China, 2013 (in Chinese). 李从波. 承重保温夹芯无拉接件的复合墙体的研究. 博士学位论文, 华南理工大学, 2013. 98 Fan Y T. Study on bond-slip mechanism between the ceramsite light weight concrete and high-strength concrete. Master’s Thesis, Ningbo University, China, 2020 (in Chinese). 范奕涛. 陶粒混凝土-高强混凝土粘结滑移机理研究. 硕士学位论文, 宁波大学, 2020. 99 Han X X. Analysis of the ceramsite concrete sandwich composite aseismatic wallboard. Master’s Thesis, Henan University, China, 2016 (in Chinese). 韩学行. 陶粒混凝土夹芯保温复合墙板性能分析. 硕士学位论文, 河南大学, 2016. 100 Bao P, Ma S C, Han X X, et al. Journal of Henan University (Natural Science), 2017, 47(5), 591(in Chinese). 鲍鹏, 马少春, 韩学行, 等. 河南大学学报 (自然科学版), 2017, 47(5), 591. 101 Guo J L, Jiang G P, Dai X L. Journal of Water Resources and Architectural Engineering, 2021, 19(6), 144(in Chinese). 郭金龙, 蒋国平, 代学灵, 等. 水利与建筑工程学报, 2021, 19(06), 144. 102 Li J J, Hou H T, Liu H N, et al. New Building Materials, 2014, 41(11), 12(in Chinese). 李晶晶, 侯和涛, 刘海宁, 等. 新型建筑材料, 2014, 41(11), 12. 103 Cao Y G, Ren H B, Liu M Y, et al. Journal of Wuhan University of Technology, 2022, 44(12), 60(in Chinese). 曹玉贵, 任寒冰, 刘沐宇, 等. 武汉理工大学学报, 2022, 44(12), 60. |
|
|
|