INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Study on the Permeability Characteristics and Microscopic Mechanism of Silty Clay in a Reservoir |
ZHANG Jianwei, LI Zhirui, CAO Kelei*, CHEN Lei, ZHAO Jiangyu
|
School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450000, China |
|
|
Abstract In order to investigate the correlation mechanism of silty clay soil microstructure and permeability characteristics under different water content, with silty clay soil in a certain reservoir dam as sample, variable head permeability tests, mercury intrusion porosimetry (MIP), and scanning electron microscope (SEM) were conducted. The permeability coefficient, hydraulic tortuosity, cumulative advance and retreat mercury curve, and pore size distribution curve were analyzed. By studying the internal morphology, defects, particle structure, and other information of soil samples, their microstructures were analyzed quantitatively and qualitatively by using correlation coefficients. The results showed that: (1) there is a negative correlation between hydraulic tortuosity and the water content and permeability coefficient of the soil sample. As the water content decreases, the hydraulic tortuosity gradually increases, and the impermeability of the soil sample is enhanced. Intrinsically, the change in pore structure changes the fluid permeability. (2) With the water content increases, the volume and quantity of large pore holes increase, while the volume and quantity of small pore holes are basically unchanged, which reduce the compactness of the soil and weaken its permeability resis-tance. (3) With the water content decreases, the soil skeleton is mainly composed of sheet-like particles, and the diameter between particles gradually decreases. The irregularity of the internal structure arrangement of pores increases, and the fractal dimension gradually increases. The permeability resistance of the soil is improved. (4) Quantitative analysis of microstructure showed that as the water content of the soil sample increases, the flatness and shape coefficient of the soil particle increase, while there is no significant change in the orientation probability entropy. Moreover, the soil sample gets the highest regularity of the pore structure with a moisture content of 21.7%. It is demonstrated that an increase in clay moisture content within a certain range will improve the orderliness and permeability of soil pore structure from a microscopic perspective.
|
Published: 25 December 2024
Online: 2024-12-20
|
|
Fund:National Natural Science Foundation of China (52279133),Innovation Fund for Doctoral Students at North China University of Water Resources and Electric Power (NCWUBC202305). |
|
|
1 Cao H, Xiao Y B. Rock and Soil Mechanics, 2017, 38(9), 2465 (in Chinese). 曹洪, 肖莹萍. 岩土力学, 2017, 38(9), 2465. 2 Zeng L L, Hong Z S, Liu S Y, et al. Chinese Journal of Geotechnical Engineering, 2012, 3 4(8), 1496(in Chinese). 曾玲玲, 洪振舜, 刘松玉, 等. 岩土工程学报, 2012, 34(8), 1496. 3 Liang J W, Fang Y G. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6), 1222 (in Chinese). 梁健伟, 房营光. 岩石力学与工程学报, 2010, 29(6), 1222. 4 Lin C D. Experimental study on the permeability of gravel soil and simulation and reconstruction analysis of microstructure. Master’s Thesis, Guilin University of Technology, China, 2022(in Chinese). 林传傣. 砾石土的渗透性实验研究及细观结构模拟重构分析. 硕士学位论文, 桂林理工大学, 2022. 5 Comiti J, Renaud M. Chemical Engineering Science, 1989, 44, 1539. 6 Yu B M, Li J H. Chinese Physics Letters, 2004, 21, 1569. 7 Zhang J X, Ma C H, Lang R Q, et al. Rock and Soil Mechanics, 2023, 44(7), 1863 (in Chinese). 张建新, 马昌虎, 郎瑞卿, 等. 岩土力学, 2023, 44(7), 1863. 8 Ma L N, Li J M, Wang Q C, et al. Journal of Lanzhou University(Natural Sciences), 2021, 57(3), 318 (in Chinese). 马丽娜, 李佳敏, 王起才, 等. 兰州大学学报 (自然科学版), 2021, 57(3), 318. 9 Della Vecchia G, Dieudonné A C, Jommi C et al. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 20, 334. 10 Simms P H, Yanful E K. Geotechnique, 2002, 52, 269. 11 Feng H P, Ma D L, Liu Q Y, et al. Chinese Journal of Geotechnical Engineering, 2019, 41(3), 574 (in Chinese). 冯怀平, 马德良, 刘启塬, 等. 岩土工程学报, 2019, 41(3), 574. 12 Di Remigio G,Rocchi I, Zania V. Applied Clay Science. 2021, 45, 214. 13 Bowen K, Chen X D, Haibo H, et al. Fractal and Fractional, 2022, 6, 88. 14 Huang X W, Yao Z S, Cai H B, et al. Rock and Soil Mechanics, 2023, 44(1), 193(in Chinese). 黄献文, 姚直书, 蔡海兵, 等. 岩土力学, 2023, 44(1), 193. 15 Ministry of Water of the People’s Republic of China.Standard for engineering classification of soil, China Planning Press, China, 2007( in Chinese). 中华人民共和国水利部. 土的工程分类标准, 中国计划出版社, 2007. 16 Industry standards of the People’s Republic of China. Geotechnical test procedures, China Planning Press, China, 2016( in Chinese). 中华人民共和国行业标准. 土工试验规程, 中国计划出版社, 2016. 17 Chu Y P, Zhang D M, Wang M, et al. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9), 1820 (in Chinese). 楚亚培, 张东明, 王满, 等. 岩石力学与工程学报, 2022, 41(9), 1820. 18 Lin W B, Ning G X, Ma L N, et al. Journal of Changjiang River Scientific Research Institute, 2023, 41(4), 124 (in Chinese). 蔺文博, 宁贵霞, 马丽娜, 等. 长江科学院院报, 2023, 41(4), 124. 19 Huang Y D. Study on the effects of shape and deformation on the inertial migration of mesoscopic particles. Ph. D. Thesis, Harbin Institute of Technology, China, 2020(in Chinese). 黄元丁. 形状和变形性对介观尺度粒子惯性迁移运动影响的研究. 博士学位论文, 哈尔滨工业大学, 2020. 20 Wang H, Zhang Q X, Zhang X, et al. Science Technology and Engineering, 2022, 22(21), 9268 (in Chinese). 王欢, 张齐笑, 张旭, 等. 科学技术与工程, 2022, 22(21), 9268. 21 Gao Z H, Chen B, Chen J L, et al. Acta Materiae Compositae Sinica, 2024, 41(2), 827(in Chinese). 高志涵, 陈波, 陈家林, 等. 复合材料学报, 2024, 41(2), 827. 22 Wang H M, Ni W K. Rock and Soil Mechanics, 2022, 43(3), 729 (in Chinese). 王海曼, 倪万魁. 岩土力学, 2022, 43(3), 729. 23 Wen J M. Decelopment of enhanced compacted clayliner for precenting volatile gas and study of key performance parameters. Master’s Thesis, Southeast University, China, 2021(in Chinese). 温嘉明. 阻隔挥发气体增强型压实黏土研发及关键性能参数研究. 硕士学位论文, 东南大学, 2021. 24 Sasanian S, Newson T A. Engineering Geology, 2013, 158, 15. 25 Zhang C, Guan P, Zhang J H, et al. Acta Scientiarum Naturalium Universitatis Pekinensis (Natural Science), 2023, 59(5), (in Chinese). 张驰, 关平, 张济华, 等. 北京大学学报(自然科学版), 2023, 59(5). 26 Tang Y Q, Yan J J. Journal of Tongji University(Natural Science), 2019, 47(5), 627 (in Chinese). 唐益群, 严婧婧. 同济大学学报(自然科学版), 2019, 47(5), 627. 27 Lei H Y, Hu Y, Lei S H, et al. Rock and Soil Mechanics, 2019, 40(S1), 32 (in Chinese). 雷华阳, 胡垚, 雷尚华, 等. 岩土力学, 2019, 40(S1), 32. |
|
|
|