RESOURCEFUL AND HIGH-VALUE UTILIZATION OF ROAD WASTES |
|
|
|
|
|
Research Progress on Heat-induced Self-healing Asphalt Concrete: a Kind of Sustainable Pavement Material |
DONG Sufen1,*, SONG Zexuan1, ZHANG Wenhui1, HUANG Zhide2, HAN Baoguo3
|
1 Department of Transportation and Logistics, Dalian University of Technology, Dalian 116024, Liaoning, China 2 School of Transportation and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China 3 Department of Civil Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China |
|
|
Abstract Thermal induction technology can improve the self-healing efficiency of asphalt concrete, increase the fatigue resistance, extend the service life, and reduce the life cycle cost of asphalt concrete pavement, thereby reducing environmental footprint(especially carbon footprint) ge-nerated by the production and usage of asphalt concrete. Here reviews the thermal induced self-healing properties and mechanisms of asphalt concrete based on electromagnetic, microwave and ray induction, then envisions it's main challenges and application prospects to provide support for the development of low-carbon and sustainable pavement. It shows that regulation and utilization of the temperature sensitivity to realize the flow and diffusion of asphalt at the crack interface is the key to achieve thermal induced self-healing. Fibrous functional fillers with high thermal/electrical properties can make asphalt concrete produce high thermal induced self-healing efficiency in a short time, while granular functional fillers endow asphalt concrete with efficient self-healing performance after prolonged heating. Electromagnetic induced self-healing performance of asphalt concrete mainly depends on functional fillers. The mineral materials in asphalt concrete are heated by microwave, leading to low heating rates and efficiency. The microwave absorption capacity and self-healing efficiency can be improved by incorporating functional fillers with high thermal conductivity and wave absorbing properties. The cooling process of ray induced self-healing is too fast to get the realization of self-healing in the cooling process. Based on these, on the premise of driving comfort and safety, low-cost, low-carbon, efficient, and safe operation are the application foundations of thermal induction technology, and developing intelligent, automatically responsive, and sustainable asphalt concrete based on thermal induction technology is the future development direction.
|
Published: 25 November 2024
Online: 2024-11-22
|
|
Fund:National Natural Science Foundation of China General Program(52178188,51978127),theNational Natural Science Foundation of China Youth Science Fund Program(51908103). |
|
|
1 Li B. Induction heating and healing properties of asphalt concrete. Master's Thesis, Wuhan University of Technology, China, 2018(in Chinese). 李斌. 沥青混凝土感应加热及愈合特性研究. 硕士学位论文, 武汉理工大学, 2018. 2 Rojas-Pardo A, Muñoz-Cáceres O, Raposeiras A C, et al. Construction and Building Materials, 2022, 347, 128621. 3 Gallego J, Del Val M A, Contreras V, et al. Construction and Building Materials, 2013, 42, 1. 4 Zhao Y F, Xu N, Wang H N, et al. Materials Reports, 2022, 37(15), 21110097(in Chinese). 赵云飞, 徐宁, 汪海年, 等. 材料导报, 2022, 37(15), 21110097. 5 Yang P, Mai J M, Zheng H, et al. Guangdong Building Materials, 2017, 33(11), 46(in Chinese). 杨朋, 麦家敏, 郑瀚, 等. 广东建材, 2017, 33(11), 46. 6 Tang J Y, Gao D Y, Zhao J. Highway, 2015, 60(12), 221(in Chinese). 汤寄予, 高丹盈, 赵军. 公路, 2015, 60(12), 221. 7 Li H C, Yu J Y, Liu Q T, et al. Advances in Materials Science and Engineering, 2019, 2019, 1. 8 Dai Q L, Wang Z G, Hasan M R M. Construction and Building Materials, 2013, 49, 729. 9 Liu Q T, Schlangen E, Van De Ven M, et al. Road Materials and Pavement design, 2010, 11(1), 527. 10 Tabaković A, O'Prey D, Mckenna D, et al. Case Studies in Construction Materials, 2019, 10, e233. 11 Yang H W, Ouyang J, Jiang Z, et al. Construction and Building Materials, 2023, 362, 129701. 12 Norambuena-Contreras J, Garcia A. Materials & Design, 2016, 106, 404. 13 Joenck F T, Joenck V B C, Del Carpio J A V, et al. Materia-Rio De Janeiro, 2022, 27(4), e20220221. 14 Zhu X Y, Cai Y S, Zhong S, et al. Construction and Building Materials, 2017, 141, 12. 15 Gómez-Meijide B, Ajam H, Lastra-González P, et al. Construction and Building Materials, 2016, 126, 957. 16 Li Y Y, Feng J L, Yang F, et al. Construction and Building Materials, 2021, 295, 123618. 17 Salih S, Gómez-Meijide B, Aboufoul M, et al. Construction and Building Materials, 2018, 167, 716. 18 Ajam H, Lastra-González P, Gómez-Meijide B, et al. Journal of Testing and Evaluation, 2017, 45(6), 1933. 19 Dinh B H, Park D W, Phan T M. KSCE Journal of Civil Engineering, 2018, 22(6), 2064. 20 Wang H P. Design and evaluation of conductive asphalt concrete for self-healing. Master's Thesis, Southeast University, China, 2016(in Chinese). 王昊鹏. 自修复型导电沥青混凝土设计与评价. 硕士学位论文, 东南大学, 2016. 21 Li H C. Study on gradient healing and aging characteristics of asphalt concrete via electromagnetic induction heating. Ph. D. Thesis, Wuhan University of Technology, China, 2020(in Chinese). 李贺川. 电磁感应加热沥青混凝土梯度愈合与老化特性研究. 博士学位论文, 武汉理工大学, 2020. 22 Yu W. Research on induction self-healing properties of warm asphalt concrete. Master's Thesis, Wuhan University of Technology, China, 2017(in Chinese). 余万. 温拌沥青混凝土感应加热自愈合性能研究. 硕士学位论文, 武汉理工大学, 2017. 23 Zhang L Y. The study on the effect of melting snow and ice by asphalt concrete pavement filled with phase-change material and carbon fiber material. Master's Thesis, Hebei University of Technology, China, 2015(in Chinese). 张璐一. 掺加相变材料和碳纤维材料的沥青混凝土路面融雪去冰效果研究. 硕士学位论文, 河北工业大学. 2015. 24 Liu F C. Study on electrothermal and self-healing characteristics of conductive asphalt mixture. Master's Thesis, Hebei university of engineering, China, 2019(in Chinese). 刘富春. 导电沥青混合料电热及自愈合特性研究. 硕士学位论文, 河北工程大学, 2019. 25 Zhao L. Research on self-healing technology of dense asphalt concrete by induction heating. Master's Thesis, Chongqing Jiaotong University, China, 2015(in Chinese). 赵龙. 密实型沥青混凝土电磁感应加热自修复技术研究. 硕士学位论文, 重庆交通大学, 2015. 26 Mi Y X. Study on application technology of electrically conductive asphalt concrete. Master's Thesis, Wuhan University of Technology, China, 2011(in Chinese). 米轶轩. 导电沥青混凝土应用技术的研究. 硕士学位论文, 武汉理工大学, 2011. 27 Tang N. Study on conductive characteristic and application of conductive asphalt concrete. Ph. D. Thesis, Wuhan University of Technology, China, 2013(in Chinese). 唐宁. 导电沥青混凝土的导电特性与工程应用研究. 博士学位论文, 武汉理工大学. 2013. 28 Fakhri M, Bahmai B B, Javadi S, et al. Journal of Cleaner Production, 2020, 253, 119963. 29 Liu W. Study on enhancement mechanism and healing evaluation of microwave absorption of asphalt mixtures. Ph. D. Thesis, Southeast University, China, 2018(in Chinese). 刘为. 沥青混合料微波吸收增强机理与修复研究. 博士学位论文, 东南大学, 2018. 30 Khiavi A K, Asadi M. Construction and Building Materials, 2022, 328, 127091. 31 Liu Q T, Schlangen E, García Á, et al. Construction and Building Materials, 2010, 24(7), 1207. 32 Zhu X Y, Ye F Y, Cai Y S, et al. Construction and Building Materials, 2020, 234, 117378. 33 Li C, Wu S P, Chen Z W, et al. Construction and Building Materials, 2018, 193, 32. 34 Lyu L N, Ao Z X, Ding Q J, et al. Highway, 2009(2), 132(in Chinese). 吕林女, 敖灶鑫, 丁庆军, 等. 公路, 2009(2), 132. 35 Yildiz K, Atakan M. Construction and Building Materials, 2020, 262, 120448. 36 Zeng J W. Research on induction heating and healing performance of asphalt mixtures based on fatigue damage. Master's Thesis, Dalian University of Technology, China, 2019(in Chinese). 曾俊惟. 基于疲劳损伤的沥青混合料感应加热愈合研究. 硕士学位论文, 大连理工大学, 2019. 37 Xu H. Research on thermal induced self-healing performance of asphalt and asphalt mixtures. Master's Thesis, Chongqing Jiaotong University, China, 2021(in Chinese). 徐浩. 沥青及沥青混合料热诱导自愈性能研究. 硕士学位论文, 重庆交通大学, 2021. 38 Zhang W. Study on self-healing behavior of steel fiber asphalt concrete under induction heating. Master's Thesis, Chongqing Jiaotong University, China, 2022(in Chinese). 张伟. 钢纤维沥青混凝土感应加热自愈合行为研究. 硕士学位论文, 重庆交通大学, 2022. 39 Liu Q T, Schlangen E, Van De Ven M. Journal of Materials in Civil Engineering, 2013, 25(7), 880. 40 García A, Bueno M, Norambuena-Contreras J, et al. Construction and Building Materials, 2013, 49, 1. 41 Pamulapati Y, Elseifi M A, Cooper S B, et al. Construction and Building Materials, 2017, 146, 66. 42 Yoo D Y, Kim S, Kim M J, et al. Journal of Materials Research and Technology, 2019, 8(1), 827. 43 Norambuena-Contreras J, Serpell R, Vidal G V, et al. Construction and Building Materials, 2016, 127, 369. 44 Liu Q T, Schlangen E, Van De Ven M, et al. Construction and Building Materials, 2012, 29, 403. 45 García Á, Schlangen E, Van De Ven M, et al. Construction and Building Materials, 2012, 30, 59. 46 Yang C, Xie J, Wu S P, et al. Construction and Building Materials, 2021, 269, 121318. 47 Wool R P, O'Connor K M. Journal of Applied Physics, 1981, 52(10), 5953. 48 Sun D Q, Sun G Q, Zhu X Y, et al. Advances in Colloid and Interface Science, 2018, 256, 65. 49 Wei W F, Zhou S B, Tan H, et al. Highway, 2020, 65(3), 253(in Chinese). 韦万峰, 周胜波, 谭华, 等. 公路, 2020, 65(3), 253. 50 Yu T J, Zhang H T, Wang Y. Construction and Building Materials, 2020, 250, 118859. 51 Norambuena-Contreras J, Gonzalez A, Concha J L, et al. Construction and Building Materials, 2018, 187, 1039. 52 García Á. Fuel, 2012, 93(1), 264. 53 Sun D Q, Sun G Q, Zhu X Y, et al. Construction and Building Materials, 2017, 132, 230. 54 Meng Y J, Lai J, Ling L S, et al. Construction and Building Materials, 2023, 364, 129967. 55 Luo W, Huang S Y, Liu Y H, et al. Construction and Building Materials, 2022, 330, 127235. 56 Zhang L, Liu Q T, Wu S P, et al. Construction and Building Materials, 2018, 174, 401. 57 Zhu Q, Pu F P, Wang W Q, et al. Sichuan Building Materials, 2016, 42(1), 175(in Chinese). 朱乾, 蒲凤平, 王文奇, 等. 四川建材, 2016, 42(1), 175. 58 Li C. Study on the self-healing performance and mechanism of asphalt concrete under microwave radiation. Ph. D. Thesis, Wuhan University of Technology, China, 2020(in Chinese). 李超. 沥青混凝土微波热诱导自修复性能与机理研究. 博士学位论文, 武汉理工大学, 2020. 59 Ling D. Research on doping mechanism of BT4/BST high frequency dielectric ceramics. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2006(in Chinese). 凌栋. BT4/BST高频介电陶瓷的掺杂研究. 硕士学位论文, 南京航空航天大学, 2006. 60 Wang F, Zhu H B, Li Y Y, et al. Construction and Building Materials, 2022, 341, 127873. 61 Zhu H Z, Yuan H, Liu Y F, et al. Journal of Materials in Civil Engineering, 2020, 32(9), 04020248. 62 Liu Q T, Chen C, Li B, et al. Materials, 2018, 11(6), 913. 63 Sun Y H, Wu S P, Liu Q T, et al. Construction and Building Materials, 2017, 150, 673. 64 Li C, Wu S P, Chen Z W, et al. Construction and Building Materials, 2018, 189, 757. 65 Zhao H D, Zhong S, Zhu X Y, et al. Journal of Materials in Civil Engineering, 2017, 29(6), 04017007. 66 Yalcin E. Construction and Building Materials, 2021, 286, 122965. 67 Gulisano F, Crucho J, Gallego J, et al. Applied Sciences-basel, 2020, 10(4), 1428. 68 Qiu J, Van De Ven M F C, Wu S P, et al. Fuel, 2011, 90(8), 2710. 69 Wang H P, Yang J, Lu G Y, et al. Journal of Testing and Evaluation, 2020, 48(2), 739. 70 Bosisio R G, Spooner J, Grαnger J. Journal of Microwave Power, 1974, 9(4), 381. 71 Concha J L, Norambuena-Contreras J. Applied Thermal Engineering, 2020, 178, 115632. |
|
|
|