INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Preparation of Fe3O4/g-C3N4 Composite Heterojunction and Its Photodegradation of Rhodamine B |
ZHU Yan1, LIU Hailong1, JIA Shikui1,*, LI Yunfeng1, SHOU Hao2
|
1 National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Enginee-ring, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China 2 Hanzhong First Adhesive Co., Ltd., Hanzhong 723000, Shaanxi, China |
|
|
Abstract In this work, firstly, g-C3N4 was obtained by thermal polymerization, and Fe3O4 was synthesized by solvothermal method. Subsequently, a series of g-C3N4/Fe3O4 composite photocatalysts were prepared by high-temperature calcination via changing the mass ratio. The morpho-logy, crystal structure, chemical bond structure and fluorescence intensity of g-C3N4/Fe3O4 composites were characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD), infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and fluorescence spectrophotometer. The degradation of rhodamine B via different mass ratios of g-C3N4/Fe3O4 composites was tested by UV-Vis-IR spectrometer under the irradiation of 250 W ultraviolet lamp, and the photocatalytic activity of the composites photocatalysts was studied. Moreover, the recycling experiment of the optimal mass ratio (20/80) g-C3N4/Fe3O4 composites was carried out to test the degradation of rhodamine B solution. The results show that the degradation rate of 5 mg/L rhodamine B reaches 95.8% by the mass ratio (20/80) g-C3N4/Fe3O4 composite within 2 hours, and it's degradation rate to rhodamine B still reaches 82.4% after five recycle times. It shows good photocatalytic activity and catalytic stability for the (20/80) g-C3N4/Fe3O4 composite.
|
Published: 10 December 2024
Online: 2024-12-10
|
|
Fund:National Natural Science Foundation of China (52263004), and Shaanxi Provincial Natural Science Foundation (2021JM-486). |
|
|
1 Yang H C, Zhang S W, Ca R Y, et al. Scientific Reports, 2017, 7(1), 8686. 2 Nayak S, Parida K M. Scientific Reports, 2019, 9(1), 2458. 3 Wang Y, Yu J, Peng W, et al. Scientific Reports, 2019, 9(1), 5932. 4 Wang X S, Li Y Z, Yi S Y, et al, Acta Materiae Compositae Sinica, 2022, 39(8), 3845 (in Chinese) 王晓爽, 李育珍, 易思远, 等. 复合材料学报, 2022, 39(8), 3845. 5 Chen H B, Xing Y J, Liu S C, et al. Chemical Engineering Journal, 2023, 462, 142038. 6 Zhang Q, Quan X, Wang H, et al. Scientific Reports, 2017, 7(1), 3128. 7 Wu L, Hu M L, Wang L P, et al. Journal of Inorganic Materials, 2023, 38(5), 503 (in Chinese) 伍林, 胡明蕾, 王丽萍, 等. 无机材料学报, 2023, 38(5), 503. 8 Yang J, Chen H, Gao J, et al. Materials Letters, 2016, 164(1), 183. 9 Zare M H, Mehrabani-Zeinabad A. Scientific Reports, 2022, 12(1), 10388. 10 Raha S, Ahmaruzzaman M. Scientific Reports, 2021, 11(1), 6379. 11 Yan S C, Li Z S, Zou Z G. Langmuir, 2009, 25(17), 10397. 12 Yu X X. Fabrication and photocatalytic properties of hierarchically nanocomposite photocatalytic materials. Ph.D. Thesis, Wuhan University of Technology, China, 2010 (in Chinese) 于笑潇. 分等级纳米复合光催化材料的制备及其光催化性能研究. 博士学位论文, 武汉理工大学, 2010. 13 Liu H W. Study on the synthesis and photocatalytic performance of Fe3O4/g-C3N4 composite photocatalyst. Master's Thesis, Louzhou Jiaotong University, China, 2018 (in Chinese) 刘宏伟. Fe3O4/g-C3N4复合光催化剂的制备及其催化性能的研究. 硕士学位论文, 兰州交通大学, 2018. 14 Dong F, Wu L W, Sun Y J, et al. Journal of Materials Chemistry, 2011, 21(39), 15171. 15 Qiu Y, Gao L. Chemical Communications, 2003, 9(18), 2378. 16 Chen H, Chen J N, Qiu P X, et al. Journal of Functional Materials, 2014, 45(23), 23049. 17 Vavilapalli D S, Peri R G, Sharma R K, et al. Scientific Reports, 2021, 11, 19639. 18 Ma M, Yang Y, Chen Y, et al. Scientific Reports, 2021, 11, 2597. 19 Iqbal N, Afzal A, Khan I, et al. Molybdenum impregnated g-C3N4 nanotubes as potentially active photocatalyst for renewable energy applications. Springer Science and Business Media LLC, Germany, 2021, pp.16886. 20 Chandrakanta K, Jena R, Pal P, et al. Journal of Materials Science Materials in Electronics, 2020, 31(18), 15875. 21 Yuan X Z, Wu Z B, Zeng G M, et al. Applied Surface Science, 2018, 454, 293. 22 Zhao F. Preparation and performance of MOF-derived ZnO composite photocatalysts. Master's Thesis, Jiangnan University, China, 2022 (in Chinese) 赵芳. MOF衍生的ZnO基复合光催化剂的制备及性能研究. 硕士学位论文, 江南大学, 2022. 23 Zhang J J, Zheng Y J, Ji T, et al. Acta Materiae Compositae Sinica, 2022, 39(12), 14 (in Chinese) 张家晶, 郑永杰, 荆涛, 等. 复合材料学报, 2022, 39(12), 14. 24 Yang J, Chen H, Gao J, et al. Materials Letters, 2016, 164(1), 183. 25 Low, J X, Yu J G, Jaroniec M, et al. Advanced Materials, 2017, 20(29), 1601694. 26 Bagbi Y, Sarswat A, Mohan D, et al. Scientific Reports, 2017, 7(1), 7672. 27 He Q, Zhao H, Teng Z. Separation and Purification Technology, 2023, 314, 2. 28 Zhang Y, Wan J, Zhang C, et al. Scientific Reports, 2022, 12(1), 3261. |
|
|
|