METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Surface Self-nanocrystallization for Medical Metal Materials |
QIU Jing1,2, HU Jian1,2,*, CHEN Mian1,2, YI Yuwei1,2
|
1 School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China 2 Jiangxi Key Laboratory of Nanobiomaterials, East China Jiaotong University, Nanchang 330013, China |
|
|
Abstract Most properties of medical metal materials are to a large extent influenced by their surface characteristics. The microstructure, grain size, surface roughness and residual stress are significant factors that obviously affect the service performance of materials. In order to enhance the wear resistance, corrosion resistance and osseointegration of medical metal materials, it is necessary to modify the surface characteristics. Among these current surface modification methods, surface self-nanocrystallization (SSNC) is a promising technology for its' synergistic effect of residual compressive stress, high hardness, and surface grain refinement generated during SSNC process, which should enhance the resistance of materials to wear and fatigue crack initiation, and improve the biological activity. This paper first outlines several typical SSNC technologies and their research progress in the field of medical metals, and analyzes their respective application ranges and main problems. It then summarizes the microstructure evolution law and grain refinement mechanism of nanocrystalline layer on the surface of medical metal materials in which the effects of SSNC parameters on the mechanical properties, corrosion resistance and biological properties of medical metal materials are emphasized. It finally points out the deficiencies in the existing research on SSNC of medical metal materials, and envisages the future research and application in this field.
|
Published: 10 December 2024
Online: 2024-12-10
|
|
Fund:Natural Science Foundation of China (51961012, 52001122) and Jiangxi Provincial Natural Science Foundation (20212ACB214001, 20203BBE53050, 20224BAB214014) |
|
|
1 Koons G L, Diba M, Mikos A G. Nature Reviews Materials, 2020, 5, 584. 2 Kumar S, Nehra M, Kedia D, et al. Materials Science and Engineering: C, 2020, 106, 110154. 3 Ren C, Luo J M, Chen Y H, et al. Materials Reports B:Research Papers, 2020, 34(18), 18081 (in Chinese). 任超, 罗军明, 陈宇海, 等. 材料导报, 2020, 34(18), 18081. 4 The State Bureau of Technology Supervision, The general technological conditions of surgical metal implant. China Standards Press, 1990(in Chinese). 国家技术监督局, 外科金属植入物通用技术条件. 中国标准出版社, 1990. 5 Kunická L, Kocich R, Lowe T C. Progress in Materials Science, 2017, 88, 232. 6 Zheng Y F, Wu Y H. Acta Metallurgica Sinica, 2017, 53(3), 257 (in Chinese). 郑玉峰, 吴远浩. 金属学报, 2017, 53(3), 257. 7 Basova T V, Vikulova E S, Dorovskikh S I, et al. Materials & Design, 2021, 204, 109672. 8 Montazerian M, Hosseinzadeh F, Migneco C, et al. Ceramics International,2022, 48(7), 8987. 9 Chen M, Wang X Q, Zhang E L, et al. Rare Metals, 2022, 41(2), 689. 10 Zhang E L, Zhao X T, Hu J L, et al. Bioactive Materials, 2021, 6(8), 2569. 11 Bagherifard S, Hickey D J, Fintová S, et al. Acta Biomaterialia, 2018, 66, 93. 12 Li H F, Wang P Y, Wen C. Nanomaterials, 2022, 12(12), 2111. 13 Lu K, Lv J. Journal of Materials Science Technology, 1999, 15, 193. 14 Demangel C, Poznanski A, Steenhout V, et al. Advanced Materials Research, 2014, 966, 435. 15 Bahl S, Aleti B T, Suwas S, et al. Materials & Design, 2018, 144, 169. 16 Fu T L, Wang X, Liu J X, et al. JOM, 2017, 69(10), 1844. 17 Huang R, Zhang L, Huang L, et al. Materials Science and Engineering: C, 2019, 97, 688. 18 Sun Y. Tribology International, 2013, 57, 67. 19 Maleki E, Maleki N, Fattahi A, et al. Surface and Coatings Technology, 2021, 405, 126729. 20 Duan M, Luo L, Liu Y. Journal of Alloys and Compounds, 2020, 823, 153691. 21 Huang H W, Wang Z B, Lv J, et al. Acta Materialia, 2015, 87, 150. 22 Lei Y B, Wang Z B, Zhang B, et al. Acta Materialia, 2021, 208, 116773. 23 Carneiro L, Wang X G, Jiang Y Y. International Journal of Fatigue, 2020, 134, 105469. 24 Wang Q, Ren J, Wang Y, et al. Materials Science and Engineering: A, 2019, 754, 121. 25 Zhang W, Zhao M C, Wang Z B, et al. Journal of Magnesium and Alloys, 2023, 11(8), 2776. 26 Wang Z W, Yan Y, Qiao L J. Journal of Materials Science, 2020, 55(27), 13351. 27 Wang Z W, Yan Y, Qiao L J. Colloids and Surfaces B: Biointerfaces, 2017, 156, 62. 28 Kumar S, Chattopadhyay K, Singh V. Journal of Alloys and Compounds, 2017, 724, 187. 29 Kumar S, Chattopadhyay K, Singh V. Materials Characterization, 2016, 121, 23. 30 Zhu L H, Guan Y J, Wang Y J, et al. Surface and Coatings Technology, 2017, 317, 38. 31 Tevlek A, Aydin H M, Maleki E, et al. Surface and Coatings Technology, 2019, 366, 204. 32 Wang C Y, Luo K Y, Wang J, et al. International Journal of Plasticity, 2022, 150, 103191. 33 Wang H, Keller S, Chang Y L, et al. Journal of Alloys and Compounds, 2022, 896, 163011. 34 Mironov S, Ozerov M, Kalinenko A, et al. Journal of Alloys and Compounds, 2022, 900, 163383. 35 Ge M Z, Xiang J Y, Tang Y, et al. Surface and Coatings Technology, 2018, 337, 501. 36 John M, Ralls A M, Kuruveri U B, et al. Metals, 2023, 13(2), 397. 37 Wang Y P, Li Y, Sun K N. Journal of Materials Processing Technology, 2018, 252, 159. 38 Qiu J, Pan T, Peng M X, et al. ACS Applied Bio Materials, 2021, 4, 3524. 39 Liu Q, Li Y X, Qiu J, et al. Rare Metals, 2021, 41, 621. 40 Chen M, Wang X, Hou X, et al. Surface and Coatings Technology, 2023, 465, 129609. 41 Lu K, Lu J. Materials Science and Engineering: A, 2004, 375, 38. 42 Zhou L C, He W F, Luo S H, et al. Journal of Alloys and Compounds, 2016, 655, 66. 43 Lu J Z, Wu L J, Sun G F, et al. Acta Materialia, 2017, 127, 252. 44 Baek S M, Choi I Y, Moon J H, et al. Materialia, 2020, 12, 100821. 45 Jin L, Cui W F, Song X, et al. Applied Surface Science, 2015, 347, 553. 46 Zhou L C, Li Y H, He W F, et al. Materials Science and Engineering: A, 2013, 578, 181. 47 Li H M, Liu Y G, Li M Q, et al. Applied Surface Science, 2015, 357, 197. 48 Nkonta D T, Drevet R, Fauré J, et al. Microscopy Research and Technique, 2021, 84(2), 238. 49 Amanov A, Cho I S, Kim D E, et al. Surface and Coatings Technology, 2012, 207, 135. 50 Kheradmandfard M, Kashani-Bozorg S F, Lee J S, et al. Journal of Alloys and Compounds, 2018, 762, 941. 51 Ye H, Sun X, Liu Y, et al. Surface and Coatings Technology, 2019, 372, 288. 52 Liu H, Jiang C, Chen M, et al. Materials Characterization, 2019, 158, 109952. 53 Kong M, Zang T, Wang Z S, et al. Journal of Materials Research and Technology, 2023, 27, 1223. 54 Mattei L, Di Puccio F. Tribology International, 2023, 187, 108768. 55 Luo X K, Zhao C L, Zha X H, et al. Materials Reports B:Research Papers, 2021, 35(12), 12114 (in Chinese). 罗学昆, 赵春玲, 查小晖, 等. 材料导报, 2021, 35(12), 12114. 56 Kumar S A, Raman S G S, Narayanan T S N S. Transactions of the Indian Institute of Metals, 2014, 67(1), 137. 57 Ao N, Liu D X, Zhang X H, et al. International Journal of Fatigue, 2023, 170, 107567. 58 Soyama H, Kuji C, Liao Y L. Journal of Magnesium and Alloys, 2023, 11(5), 1592. 59 Chui P F, Sun K N, Sun C, et al. Applied Surface Science, 2011, 257(15), 6787. 60 Ahmed A A, Mhaede M, Wollmann M, et al. Surface and Coatings Technology, 2014, 259, 448. 61 Mineta T, Sato H. Materials Science and Engineering: A, 2018, 735, 418. 62 Huo W T, Zhang W, Lu J W, et al. Journal of Alloys and Compounds, 2017, 720, 324. 63 Ren K, Yue W, Zhang H Y. Surface and Coatings Technology, 2018, 349, 602. 64 Hallab N J, Bundy K J, O'Connor K, et al. Tissue Engineering, 2001, 7(1), 55. 65 Kim D, Pugno N M, Ryu S. Scientific Reports, 2016, 6(1), 37813. 66 Guo H Y, Li B, Feng X Q. Physical Review E, 2016, 94(4), 042801. 67 Mazigi O, Kannan M B, Xu J, et al. ACS Biomaterials Science & Engineering, 2017, 3(4), 509. 68 Bagherifard S, Hickey D J, De Luca A C, et al. Biomaterials, 2015, 73, 185. 69 Bahl S, Shreyas P, Trishul M, et al. Nanoscale, 2015, 7(17), 7704. 70 Misra R D K, Nune C, Pesacreta T C, et al. Acta Biomaterialia, 2013, 9(4), 6245. 71 Misra R D K, Thein-Han W W, Pesacreta T C, et al. Acta Biomaterialia, 2009, 5(5), 1455. 72 Lai M, Yang X F, Liu Q, et al. AIMS Materials Science, 2014, 1(1), 45. 73 Agrawal R K, Pandey V, Barhanpurkar-Naik A, et al. Ultrasonics, 2020, 104, 106110. 74 Hou X N, Mankoci S, Walters N, et al. Materials Science and Enginee-ring: C, 2018, 93, 12. 75 Uddin M, Hall C, Santos V, et al. Materials Science and Engineering: C, 2021, 118, 111459. 76 Huo W T, Lin X, Yu S, et al. Journal of Materials Science, 2019, 54(5), 4409. 77 Hsu S K, Ho W F, Wu S C, et al. Thin Solid Films, 2016, 620, 139. 78 Motemani Y, Greulich C, Khare C, et al. Applied Surface Science, 2014, 292, 626. 79 Wen M, Wen C, Hodgson P, et al. Colloids and Surfaces B: Biointerfaces, 2014, 116, 658. 80 Zhao C L, Ji W P, Han P, et al. Journal of Nanoparticle Research, 2011, 13(2), 645. 81 Zhao C L, Han P, Ji W P, et al. Journal of Biomaterials Applications, 2012, 27(2), 113. 82 Huang R, Liu L, Li B, et al. Journal of Materials Science & Technology, 2021, 73, 31. 83 Zhang R X, Mankoci S, Walters N, et al. Journal of Biomedical Materials Research, 2019, 107(6), 1854. 84 Hou X N, Qin H F, Gao H Y, et al. Materials Science and Engineering: C, 2017, 78, 1061. 85 Eisenbarth E, Velten D, Schenk-Meuser K, et al. Biomolecular Engineering, 2002, 19(2), 243. 86 Zhou H X, Pang X D. Chemical Reviews, 2018, 118(4), 1691. 87 Huang R, Hao Y, Pan Y, et al. RSC Advances, 2022, 12(31), 20037. 88 Misra R D K, Thein-Han W W, Pesacreta T C, et al. Acta Biomaterialia, 2010, 6(8), 3339. 89 Ryan C N M, Pugliese E, Shologu N, et al. Biomaterials Advances, 2023, 144, 213196. |
|
|
|