INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Life Cycle Assessment of Environmental Impacts of CO2-cured Concrete |
GUO Bingbing1,*, CHU Jia1, WANG Yan2, NIU Ditao1
|
1 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China 2 School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China |
|
|
Abstract Considering that CO2 curing for concrete can achieve high-value utilization and sequestration of CO2, the life cycle environmental impact assessment of CO2-cured concrete was studied here. Based on experimental investigations in existing literatures, datasets of the life cycle environmental impacts for CO2-cured concrete were established, and then the carbon emissions were calculated. Based on the Monte Carlo simulation method, the uncertainty analysis of the influence of carbon emission coefficient of raw materials on the calculation results of environmental net benefit was studied. The results indicated that carbon emissions from the production process of cement and the curing process of concrete are key factors affecting the environmental benefits of CO2-cured concrete. The results of uncertainty analysis showed that, among the 120 datasets, 21 datasets would produce positive environmental net benefits, and the other 99 datasets would produce negative environmental net benefits. Increasing CO2 curing time or gas pressure could enhance the amount of CO2 captured by concrete, but it could also increase the energy consumption of carbonation equipment, leading to excessive carbon emissions during the production process of CO2-cured concrete. Excessive CO2 curing time, high pressure and the resulted reduction of mechanical properties of concrete can lead to negative environmental net benefits of CO2-cured concrete. Thus, based the calculation results in this work, it is recommended to use atmospheric pressure CO2 curing for a duration of less than 6 h.
|
Published: 25 December 2024
Online: 2024-12-20
|
|
Fund:National Natural Science Foundation of China (52341803) and Shenzhen Science and Technology Innovation Commission (CJGJZD20220517141806015). |
|
|
1 Zhan B J, Poon C S, Shi C J. Cement and Concrete Composites, 2013, 42, 1. 2 Chen H, Mou Y. Journal of Chongqing Technology and Business University(Natural Science Edition), 2023, 40(2), 7(in Chinese). 陈欢, 牟瑛. 重庆工商大学学报(自然科学版), 2023, 40(2), 7. 3 Wang Y, Guo C H, Chen X J, et al. China Geology, 2021, 4(4), 720. 4 Hepburn C, Adlen1 E, Beddington J, et al. Nature, 2019, 575(7781), 87. 5 Lu B, Shi C J, Cao Z J, et al. Journal of Cleaner Production, 2019, 233, 421. 6 Liu K Z, Zhang J R, Tian X, et al. Materials Reports, 2023, 37(23), 1 (in Chinese). 刘奎周, 张建仁, 田湘, 等. 材料导报, 2023, 37(23), 1. 7 Rostami V, Shao Y X, Boyd A J. Journal of Materials in Civil Engineering, 2012, 24(9), 1221. 8 Liu Z, Meng W N. Journal of CO2 Utilization, 2021, 44, 101428. 9 Sharma D, Goyal S. Journal of Cleaner Production, 2018, 192, 844. 10 El-Hassan H, Shao Y X. Cement and Concrete Composites, 2015, 62, 168. 11 El-Hassan H, Shao Y X. Magazine of Concrete Research, 2014, 66(14), 708. 12 Zhang D, Shao Y X. Journal of CO2 Utilization, 2018, 27, 137. 13 Shao Y X, Mirza M S, Wu X R. Canadian Journal of Civil Engineering, 2006, 33(6), 776. 14 Ashraf W. Construction and Building Materials, 2016, 120, 558. 15 Ashraf W, Olek J, Sahu S. Construction and Building Materials, 2019, 210, 473. 16 Gilroy B, Black L, Thompson D, et al. Civil Engineering Research in Ireland, 2020. 17 Zeng H M, Liu Z C, Wang F Z. Journal of the Chinese Ceramic Society, 2020, 48(11), 1801 (in Chinese). 曾海马, 刘志超, 王发洲. 硅酸盐学报, 2020, 48(11), 1801. 18 Zhang F, Mo L W, Deng M. Journal of the Chinese Ceramic Society, 2016, 44(5), 640 (in Chinese). 张丰, 莫立武, 邓敏. 硅酸盐学报, 2016, 44(5), 640. 19 Kashef-Haghighi S, Ghoshal S. Industrial and Engineering Chemistry Research, 2010, 49(3), 1143. 20 Zhang N, Duan H B, Miller T R, et al. Renewable and Sustainable Energy Reviews, 2020, 117, 109495. 21 Guo B B, Yu R C, Wang J, et al. Construction and Building Materials, 2023, 401, 132868. 22 Guo B B, Chu G X, Yu R C, et al. Journal of Building Engineering, 2023, 76, 107311. 23 Rostami V, Shao Y X, Boyd A J. Construction and Building Materials, 2011, 25(8), 3345. 24 Ravikumar D, Zhang D, Keoleian G, et al. Nature Communications, 2021, 12(1), 855. 25 ISO 14040-14044. International Organization for Standardization, Swit-zerland, 2006. 26 Ji C Y, Wu Y T, Zhao Z F, et al. Sustainability, 2022, 14(11), 6907. 27 Li X D, Wang S, Kong X Q, et al. China Civil Engineering Journal, 2011, 44(1), 132 (in Chinese). 李小冬, 王帅, 孔祥勤, 等. 土木工程学报, 2011, 44(1), 132. 28 Müller H S, Haist M, Vogel M. Construction and Building Materials, 2014, 67, 321. 29 Zhang Y R, Xu Y Q, Yao Z Y, et al. Journal of Zhejiang University of Technology, 2020, 48(6), 648 (in Chinese). 章玉容, 徐雅琴, 姚泽阳, 等. 浙江工业大学学报, 2020, 48(6), 648. 30 Long G C, Gao Y, Xie Y J. Construction and Building Materials, 2015, 84, 301. 31 Shao Y X. Beneficial use of carbon dioxide in precast concrete production. McGill University, Montreal, Canada, 2014. 32 Zhang D, Shao Y X. Construction and Building Materials, 2016, 123, 516. 33 Shao Y X, Morshed A Z. Materials and Structures, 2015, 48, 307. 34 Zhang D, Shao Y X. Construction and Building Materials, 2016, 113, 134. 35 Zhang D, Cai X H, Shao Y X. Journal of Materials in Civil Engineering, 2016, 28(11). 36 Li Z, He Z, Chen X R. Materials, 2019, 12(22), 3729. 37 Zhang D, Liu T L, Shao Y X. Journal of Materials in Civil Engineering, 2020, 32(4), 04020038. 38 Morshed A Z, Shao Y X. Journal of Sustainable Cement-Based Materials, 2013, 2(2), 144. 39 Liu T L. Effect of early carbonation curing on concrete resistance to weathering carbonation. Master’s Thesis, McGill University, Canada, 2016. 40 El-Hassan H, Shao Y X, Ghouleh Z. Journal of Materials in Civil Engineering, 2013, 25(6), 799. 41 El-Hassan H, Shao Y X, Ghouleh Z. ACI Materials Journal, 2013, 110(4), 441. 42 Chen T F, Gao X J. Journal of CO2 Utilization, 2019, 34, 74. 43 Sharma D, Goyal S. European Journal of Environmental and Civil Engineering, 2022, 26(4), 1300. 44 Zhang D, Shao Y X. ACI Materials Journal, 2019, 116(3), 3. 45 Sidhu G S, Guleria H, Sharma D, et al. Journal of Sustainable Cement-Based Materials, 2023, 12(10), 1242. 46 El-Hassan H. Static and dynamic carbonation of lightweight concrete masonry units. Ph. D. Thesis, McGill University, Canada, 2012. 47 Chen T F, Gao X J. ACS Sustainable Chemistry and Engineering, 2020, 8(9), 3872. 48 ASMI. NRMCA member national and regional life cycle assessment benchmark (Industry Average) report. 2014 49 Huang H, Wang T, Kolosz B, et al. Journal of Cleaner Production, 2019, 241, 118359. 50 Skone T J, Mutchek M, Krynock M, et al. National Energy Technology Laboratory, 2022. 51 El-Hassan H, Shao Y X. Journal of Clean Energy Technologies, 2014, 2(3), 287. 52 Heijungs R, Lenzen M. The International Journal of Life Cycle Assessment, 2014, 19(7), 1445. 53 Kashef-Haghighi S, Shao Y X, Ghoshal S. Cement and Concrete Research, 2015, 67, 1. 54 Pan X Y, Shi C J, Hu X, et al. Construction and Building Materials, 2017, 154, 1087. 55 Pan X Y, Shi C J, Farzadnia N, et al. Cement and Concrete Composites, 2019, 99, 89. 56 Shi C J, Liu M, He P P, et al. Journal of Sustainable Cement-Based Materials, 2012, 1(1-2), 24. 57 Sanjuán M Á, Estévez E, Argiz C, et al. Cement and Concrete Compo-sites, 2018, 90, 257. 58 Papadakis V G. Cement and Concrete Research, 2000, 30(2), 291. 59 Lo T Y, Nadeem A, Tang W C P, et al. Construction and Building Materials, 2009, 23(3), 1306. 60 Servio P, Englezos P. Fluid Phase Equilibria, 2001, 190(1), 127. 61 Short N R, Brough A R, Seneviratne A M G, et al. Journal of Materials Science, 2004, 39(18), 5683. 62 Saetta A V, Schrefler B A, Vitaliani R V. Cement and Concrete Research, 1995, 25(8), 1703. 63 Maail R S, Umemura K, Aizawa H, et al. Journal of Wood Science, 2012, 58(1), 31. 64 Song H, Niu D T, Li C H. Journal of the Chinese Ceramic Society, 2009, 37(12), 2066 (in Chinese). 宋华, 牛荻涛, 李春晖. 硅酸盐学报, 2009, 37(12), 2066. 65 Shi C J, Wu Y Z. Resources, Conservation and Recycling, 2008, 52(8-9), 1087. 66 Han J D, Pan G H, Sun W, et al. Science China Technological Sciences, 2012, 55(3), 616. 67 Gong Z Q, Zhang Z H. China Civil Engineering Journal, 2004, 37(5), 86 (in Chinese). 龚志起, 张智慧. 土木工程学报, 2004, 37(5), 86. 68 Jang J G, LeeV H K. Cement and Concrete Research, 2016, 82, 50. 69 He Z, Wang S, Mahoutian M, et al. Journal of CO2 Utilization, 2020, 37, 309. 70 Ahmad S, Assaggaf R A, Maslehuddin M, et al. Construction and Building Materials, 2017, 136, 565. 71 García-González C A, Hidalgo A, Andrade C, et al. American Chemical Society, 2006, 45(14), 4985. 72 Cizer Ö, Balen K V, Elsen J, et al. Construction and Building Materials, 2012, 35, 741. 73 Galan I, Glasser F P, Baza D, et al. Cement and Concrete Research, 2015, 74, 68. 74 Habert G, Roussel N. Cement and Concrete Composites, 2009, 31(6), 397. 75 Gartner E. Cement and Concrete Research, 2004, 34(9), 1489. 76 Zachar J. Journal of Materials in Civil Engineering, 2011, 23(6), 789. 77 Liu M H, Zhang Y R, Wang Y F. Materials Research Innovations, 2015, 19, 9. 78 Wang T, Huang H, Hu X T, et al. Chemical Engineering Journal, 2017, 323, 320. 79 Chatterjee A K. Cement and Concrete Research. 1996, 26(8), 1213. 80 Stanek T, Sulovsky P. Cement and Concrete Research, 2015, 68, 203. 81 Li Y, Liu Y, Gong X Z, et al. Journal of Cleaner Production, 2016, 120, 221. 82 Qin L, Mao X T, Gao X J, et al. Journal of Building Materials, 2022, 25(12), 1269 (in Chinese). 秦玲, 毛星泰, 高小建, 等. 建筑材料学报, 2022, 25(12), 1269. 83 Qin L, Mao X T, Gao X J, et al. Journal of Building Materials, 2022, 25(12), 1269 (in Chinese). 秦玲, 毛星泰, 高小建, 等. 建筑材料学报, 2022, 25(12), 1269. |
|
|
|