POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Effect of A-site-deficient on the Catalytic Performance of LaxNiO3+δ in Phenol Hydrodeoxygenation Reactions |
PENG Linsen1,2, LI Ning1,*, JIANG Wu1, LIAN Caixia1
|
1 School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China 2 School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China |
|
|
Abstract Adopting a method combines sol-gel method and hydrothermal method, a series of Lax NiO3+δ (x=1, 0.9, 0.8, 0.7, 0.6) perovskite oxides samples with A-site defects were prepared by using monodisperse poly(methyl methacrylate) microspheres as templates respectively. The crystalline phase structure, surface morphology, elemental valence, specific surface area and pore size distribution of them were characterised by XRD, SEM, XPS and H2-TPR, etc. The results showed that a low level of A-site defects could form stable perovskites, and as the level of defects increased, the perovskites were removed with the appearance of new phases NiO and La2NiO4. By controlling the A-site defects within a certain range, the increase of Ni2+ in the perovskite structure is conducive to the formation of oxygen vacancies and can promote the reduction of nickel ions in the B-site to produce highly dispersed Ni0 species. The hydrodeoxygenation reaction of LaxNiO3+δ to phenol is mainly direct deoxygenation reaction. At atmospheric pressure and 350 ℃, the one-way conversion of La0.9NiO3+δ catalyst was 25.71%, and the benzene selectivity was 94.87%.
|
Published: 10 December 2024
Online: 2024-12-10
|
|
Fund:Major Projects in Basic Research and Applied Research of Guangdong Province (2017KZDXM057) and Featured Innovation Project of Guangdong Province(2019KTSCX104). |
|
|
1 Amjith L R, Bavanish B. Chemosphere, 2022, 293, 8. 2 Zhang J H, Sun J M, Wang Y. Green Chemistry, 2020, 22(4), 1072. 3 Qu L, Jiang X, Zhang Z H, et al. Green Chemistry, 2021, 23(23), 9348. 4 Lian C X, Li N, Jiang W, et al. Chemical Industry and Engineering Progress, 2020, 39(S1), 153 (in Chinese). 练彩霞, 李凝, 蒋武, 等. 化工进展, 2020, 39(S1), 153. 5 Ong H C, Chen W H, Farooq A, et al. Renewable & Sustainable Energy Reviews, 2019, 113. 6 Wang X C, Arai M, Wu Q F, et al. Green Chemistry, 2020, 22(23), 8140. 7 Prasomsri T, Shetty M, Murugappan K, et al. Energy and Environmental Science, 2014, 7, 2660. 8 Cheah Y W, Salam M A, Sebastian J, et al. Journal of Environmental Chemical Engineering, 2023, 11(3), 109614. 9 Mortensen P M, Gardini D, Damsgaard C D, et al. Applied Catalysis A: General, 2016, 523, 159. 10 Che W, Wei M R, Sang Z S, et al. Journal of Alloys and Compounds, 2018, 731, 381. 11 Arandiyan H, Wang Y, Sun H Y, et al. Chemical Communications, 2018, 54(50), 6484. 12 Xiao P, Zhu J, Zhao D, et al. ACS Applied Materials & Interfaces, 2019, 11(17), 15517. 13 Wu M D, Chen S Y, Xiang W G. Chemical Engineering Journal, 2020, 387, 12. 14 Papargyriou D, Miller D N, Irvine J T S. Journal of Materials Chemistry A, 2019, 7(26), 15812. 15 Zheng Y, Zhang R, Zhang L, et al. Angewandte Chemie, 2021, 133(9), 4824. 16 Chen H J, Lim C, Zhou M Z, et al. Advanced Science, 2021, 11(11), 2003799. 17 Wu X, Miao H, Hu R, et al. Applied Surface Science, 2021, 536, 147806. 18 Escalona N, Aranzaez W, Leiva K, et al. Applied Catalysis A: General, 2014, 481, 1. 19 Shetty M, Zanchet D, Green W H, et al. ChemSusChem, 2019, 12(10), 2171. 20 Chen J H, Shen M Q, Wang X Q, et al. Applied Catalysis B-Environmental, 2013, 134, 251. 21 Li C C. Preparation of 3DOM metal oxides and itseffect on thermal decomposition propertiesof energetic materials. Master's Thesis, Northwest University, China, 2021 (in Chinese). 李翠翠. 3DOM金属氧化物的制备及对含能材料热分解性能的影响. 硕士学位论文, 西北大学, 2021. 22 Jiang W, Li N, Lian C X, et al. Chemical Research and Application, 2022, 34(10), 2416. (in Chinese). 蒋武, 李凝, 练彩霞, 等. 化学研究与应用, 2022, 34(10), 2416. 23 Marinho A L A, Rabelo-Neto R C, Noronha F B, et al. Applied Catalysis A: General, 2016, 520, 53. 24 Dai X P, Yu C C. Journal of Molecular Catalysis, 2012, 26(5), 423. (in Chinese). 代小平, 余长春. 分子催化, 2012, 26(5), 423. 25 Delmastro A, Mazza D, Ronchetti S, et al. Materials Science and Engineering: B, 2001, 79(2), 140. 26 Voorhoeve R J H, Johnson D W, Remeika J P, et al. Science, 1977, 195(4281), 827. 27 Yang Q H. Photocatalytic oxidation and reduction activity of nano-perovskite ABO3 oxidess. Ph. D. Thesis, Tianjin University, China, 2003 (in Chinese). 杨秋华. 纳米钙钛矿型ABO3复合氧化物的光催化氧化还原活性. 博士学位论文, 天津大学, 2003. 28 Spinicci R, Tofanari A, Delmastro A, et al. Materials Chemistry and Physics, 2002, 76(1), 20. 29 Shi X, Guo J, Shen T, et al. Chemical Engineering Journal, 2021, 421, 129995. 30 Pal N, Paul M, Bhaumik A. Applied Catalysis A: General, 2011, 393(1), 153. 31 Wang Z, You Y, Yuan J, et al. ACS Applied Materials & Interfaces, 2016, 8(10), 6520. 32 Chen H J, Lim C, Zhou M Z, et al. Advanced Science, 2021, 8(22), 2102713. 33 Choi S, Penninger M, Kim C H, et al. ACS Catalysis, 2013, 3, 2719. 34 Barr T L. The Journal of Physical Chemistry, 1978, 82(16), 1801. 35 Barr T L, Seal S, He H, et al. Vacuum, 1995, 46(12), 1391. 36 Deng J, Zhang L, Dai H, et al. Industrial & Engineering Chemistry Research, 2008, 47(21), 8175. 37 Xu Y. Synthesis of metal composite oxides and their applications in environmental catalysis. Ph. D. Thesis, Wuhan University, China, 2021 (in Chinese). 徐银. 金属复合氧化物的制备及其在环境催化中的应用. 博士学位论文, 武汉大学, 2019. 38 Hammami R, Batis N H, Batis H, et al. Solid State Sciences, 2009, 11(4), 885. 39 Mao L, Yan Y Y, Zhao X T, et al. Catalysis Letters, 2019, 149(4), 1087. 40 Pereñiguez R, Gonzalez-Delacruz V M, Caballero A, et al. Applied Catalysis B: Environmental, 2012, 123-124, 324. 41 Ai L, Shi Y T, Han Y J, et al. Reaction Kinetics Mechanisms and Catalysis, 2021, 133(1), 209. 42 Yang F, Liu D, Zhao Y, et al. ACS Catalysis, 2018, 8(3), 1672. 43 Rong S P, Li K Z, Zhang P Y, et al. Catalysis Science & Technology, 2018, 8(7), 1799. |
|
|
|