POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Study on the Microscopic Properties of Ethylene-propylene-diene Monomer and Its Effect on Surface Discharge Under External Electric Field |
LI Yasha1,2,*, GUO Yujie1,2, XIA Yu3, WANG Jiamin1,2, YAN Xinyue1,2, CHEN Junzhang1,2
|
1 College of Electrical and New Energy, China Three Gorges University, Yichang 443002, Hubei, China 2 Hubei Provincial Engineering Technology Research Center for Power Transmission Line, Yichang 443002, Hubei, China 3 EHV Power Transmission Company, State Grid Jibei Electric Power Co., Ltd., Beijing 102488, China |
|
|
Abstract Ethylene-propylene-diene monomer (EPDM), as a functional material, has attracted much attention in the field of medium and high voltage cable insulation. However, the actual service environment is harsh, and the surface discharge phenomenon occurs occasionally. In order to study the surface discharge characteristics of ethylene-propylene-diene monomer from the microscopic level, the density functional theory was used to analyze the molecular geometry, orbital energy levels, trap depth, density of states, electrostatic potential, excited state and other microscopic properties. The calculated results show that with the increase of electric field, the EPDM molecular chain extends and straightens gradually, and the dipole moment gradually increases to 8.164 D. The region near the third monomer gradually evolves into electron traps, and the trap depth decreases from 0.740 eV to 0.043 eV with the increase of electric field, and their number increases. The electrophilicity of carbon-carbon double bond makes the electrons in the third monomer region more active, which easily aggravates the development of electron avalanche. With the increase of external electric field, the excitation energy of EPDM molecular chain decreases gradually, and the absorption peak is red shifted, and electrons are easily excited at this time. The third monomer region is the main excitation region. When the excited electrons return to the ground state orbit, they will release photons, which is easy to form space photoionization in the surface gas, and induce the occurrence of surface discharge.
|
Published: 10 December 2024
Online: 2024-12-10
|
|
Fund:National Natural Science Foundation of China (51577105). |
|
|
1 Wang S Y, Liu Y, Lei Z P, et al. Insulating Materials, 2022, 55(4), 56 (in Chinese). 王思宇, 刘洋, 雷志鹏, 等. 绝缘材料, 2022, 55(4), 56. 2 Nunes S P, Da Costa R A, Barbosa S P, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 1986, 24(1), 99. 3 Bolliger D A, Boggs S A. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3), 996. 4 Lei Z P. Dielectric properties of epr and partial discharge mechanism occurring in cavities and along surface of EPR. Ph. D. Thesis, Taiyuan University of Technology, China, 2015 (in Chinese). 雷志鹏. 乙丙橡胶绝缘介电性能及其气隙和沿面放电机理的研究. 博士学位论文, 太原理工大学, 2015. 5 He H Q, Wang X, Liu S J, et al. Insulating Materials, 2006, 39(5), 40 (in Chinese). 何华琴, 王霞, 刘胜军, 等. 绝缘材料, 2006, 39(5), 40. 6 Guo L, Cao W D, Bai L L, et al. High Voltage Engineering, 2021, 47(1), 231 (in Chinese). 郭蕾, 曹伟东, 白龙雷, 等. 高电压技术, 2021, 47(1), 231. 7 Bai L L, Zhou L J, Liu C, et al. Journal of the China Railway Society, 2021, 43(5), 62(in Chinese). 白龙雷, 周利军, 刘聪, 等. 铁道学报, 2021, 43(5), 62. 8 Zidane O, Haller R, El-Refaie E S M, et al. In: 2020 International conference on diagnostics in electrical engineering (diagnostika). Pilsen, Czech Republic, 2020. 9 Guo L, Cao W D, Bai L L, et al. Journal of Southwest Jiaotong University, 2021, 56(5), 1011 (in Chinese). 郭蕾, 曹伟东, 白龙雷, 等. 西南交通大学学报, 2021, 56(5), 1011. 10 Du B X, Su J G, Tian M, et al. Scientific Reports, 2018, 8, 8481. 11 Lan L, Wu J D, Wang Y N, et al. Proceedings of the Chinese Society for Electrical Engineering, 2015, 35(5), 1266 (in Chinese). 兰莉, 吴建东, 王雅妮, 等. 中国电机工程学报, 2015, 35(5), 1266. 12 Xu X X, Lei Z P, Song J C, et al. High Voltage Apparatus, 2019, 55(5), 161 (in Chinese). 徐晓晓, 雷志鹏, 宋建成, 等. 高压电器, 2019, 55(5), 161. 13 Zhang K F, Zhang L, Li Z W, et al. Transactions of China Electrotechnical Society, 2019, 34(15), 3275 (in Chinese). 张开放, 张黎, 李宗蔚, 等. 电工技术学报, 2019, 34(15), 3275. 14 Li Y S, Xia Y, Liu S C, et al. Acta Physica Sinica, 2022, 71(5), 119(in Chinese). 李亚莎, 夏宇, 刘世冲, 等. 物理学报, 2022, 71(5), 119. 15 Takada T, Kikuchi H, Miyake H, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2), 1240. 16 Wang W W, Tanaka Y, Takada T, et al. In: 2017 International symposium on electrical insulating materials (ISEIM). Toyohashi, Japan, 2017, pp.176. 17 Li Q M, Huang X W, Xiao Y, et al. High Voltage Apparatus, 2019, 55(2), 39 (in Chinese). 李庆民, 黄旭炜, 肖伊, 等. 高压电器, 2019, 55(2), 39. 18 Wang Y J, Yang Y Y, Wang L B. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2021, 22(7), 499. 19 Liang Y, Gao T, Wang X N, et al. Transactions of China Electrotechnical Society, 2020, 35(7), 1575 (in Chinese). 梁英, 高婷, 王祥念, 等. 电工技术学报, 2020, 35(7), 1575. 20 Zhai P F, Peng Y F, Han X Y. Insulators and Surge Arresters, 2021(2), 212 (in Chinese). 翟鹏飞, 彭玉峰, 韩雪云. 电瓷避雷器, 2021(2), 212. 21 Frish M J, Trucks G W, Schlegel H B. 2010 Gaussian 09, Revision B01. Walling ford: Gaussian Inc. 22 Xu L, Liu X F. Polymeric Materials Science and Engineering, 2021, 37(7), 123 (in Chinese). 徐林, 刘曦非. 高分子材料科学与工程, 2021, 37(7), 123. 23 Li L L, Zhang X H, Wang Y L, et al. High Voltage Engineering, 2017, 43(9), 2866 (in Chinese). 李丽丽, 张晓虹, 王玉龙, 等. 高电压技术, 2017, 43(9), 2866. 24 Li Y S, Qu C, Xia Y, et al. High Voltage Engineering, DOI:10.13336/j.1003-6520.hve.20221613 (in Chinese). 李亚莎, 瞿聪, 夏宇, 等. 高电压技术, DOI:10.13336/j.1003-6520.hve.20221613. 25 Lu T, Chen F. Journal of Computational Chemistry, 2012, 33(5), 580. 26 Lu T, Chen F. Journal of Molecular Graphics & Modelling, 2012, 38, 314. 27 Zhang J, Lu T. Physical Chemistry Chemical Physics, 2021, 23, 20323. 28 Qing R. Chinese Journal of High Pressure Physics, 2019, 33(3), 4 (in Chinese). 覃睿. 高压物理学报, 2019, 33(3), 4. 29 Liu Z Y, Lu T, Chen Q X. Carbon, 2020, 165, 461. 30 Liu Z Y, Wang X, Lu T, et al. Carbon, 2022, 187, 78. 31 Xu H, Du B X, Su J G. High Voltage Engineering, 2017, 43(2), 453 (in Chinese). 徐航, 杜伯学, 苏金刚. 高电压技术, 2017, 43(2), 453. 32 Computational Chemistry Comparison and Benchmark Data Base. https://cccbdb.nist.gov/vibscalejustx.asp. 33 Zhen C C, Zuo P Y, Feng S H. China Rubber Industry, 2014, 61(12), 731 (in Chinese). 郑丛丛, 左培艳, 冯绍华. 橡胶工业, 2014, 61(12), 731. 34 Liu Y, Wang X. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6), 2027. 35 Liao R J, Lu Y C, Yang L J, et al. Insulating Materials, 2006, 39(6), 51 (in Chinese). 廖瑞金, 陆云才, 杨丽君, 等. 绝缘材料, 2006, 39(6), 51. 36 Min D M, Li S T, Hirai N, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(1), 537. 37 Li L L, Zhang X H, Wang Y L, et al. Acta Physica Sinica, 2017, 66(8), 316 (in Chinese). 李丽丽, 张晓虹, 王玉龙, 等. 物理学报, 2017, 66(8), 316. 38 Wang S F. Study on the surface electrical tracking failure mechanism and evaluation method for ethylene propylene rubber under HVAC. Master's Thesis, Taiyuan University of Technology, China, 2018 (in Chinese). 王少飞. 交流高压下乙丙橡胶绝缘表面电痕破坏机理及其评估方法的研究. 硕士学位论文, 太原理工大学, 2018. 39 Li Z Y. Insulation modifications and electrical properties of EPDM used for high voltage DC cable accessories. Ph. D. thesis, Harbin University of Science and Technology, China, 2021 (in Chinese). 李中原. 高压直流电缆附件三元乙丙橡胶绝缘改性与电气性能研究. 博士学位论文, 哈尔滨理工大学, 2021. |
|
|
|