METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Preparation Methods and Research Progress of High Purity Copper |
WANG Dong1,2,3,4, YU Haosong1,2,3,4, LIANG Dong1,2,3,4, WANG Lipeng1,2,3,4, MA Tingzhuang1,2,3,4, YU Rong1,2,3,4, YANG Bin1,2,3,4, TIAN Yang1,2,3,4,*
|
1 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China 2 State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China 3 National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China 4 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China |
|
|
Abstract High purity copper plays an important role in integrated circuits, semiconductors, aerospace and other fields due to its excellent physical and chemical properties. China is the largest country in copper production and consumption. However, the improvement of the competitiveness in copper industry is restricted by the lack of efficient preparation technology for 99.999% and above. How to efficiently prepare high-purity copper becoming the focus of industry research. In this paper, the research status of high-purity copper preparation processes such as electrolysis, extraction, ion exchange, vacuum distillation, and zone melting are reviewed based on the preparation methods and production processes of high-purity copper, including purification mechanism, preparation efficiency, and purification effect. The effects of additives, temperature gradient, current density, and holding time on the preparation of high-purity copper are summarized. Finally, the present situation of high purity copper prepared by vacuum distillation is discussed through comparing the advantages and disadvantages between the hydrometallurgy process and the pyrometallurgy process. According to the current research progress of the preparation of high purity copper, the future development direction of the preparation of high purity copper is prospected.
|
Published: 10 October 2024
Online: 2024-10-23
|
|
Fund:Major Science and Technology Project of Yunnan Province (202102AB080008, 202102AB080005), and the Science and Technology Program Funding Project of Yunnan Provincial Science and Technology Department (202305AS350012). |
|
|
1 Xiao Y. China Chemical Trade, 2020, 12(17), 71(in Chinese). 肖颖. 中国化工贸易, 2020, 12(17), 71. 2 Tamas K, Kouji M, Yukio I, et al. Metallurgical and Materials Transactions B, 1997, 28(6), 987. 3 Yang H Y, Ma Z C, Lei C H, et al. Science China Technological Sciences, 2020, 63(12), 2505. 4 Li Z, Xiao Z, Jiang Y B, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(9), 2019(in Chinese). 李周, 肖柱, 姜雁斌, 等. 中国有色金属学报, 2019, 29(9), 2019. 5 Wen S, Chang L L, Shang X J, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(6), 1655(in Chinese). 文姗, 常丽丽, 尚兴军, 等. 中国有色金属学报, 2015, 25(6), 1655. 6 Li L, Pan D, Li B, et al. Resources, Conservation and Recycling, 2017, 127, 1. 7 Liu S, Zhang Y, Su Z, et al. Journal of Materials Research and Technology, 2020, 9(3), 2846. 8 Kato M. Journal of Operations Management, 1995, 47(12), 44. 9 Yuichiro S, Susumu S, Atsushi F. U. S. patent, US2011123389A1, 2011. 10 Guo Q, Xi X, Yang S, et al. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4), 626. 11 Virolainen S, Suppula I, Sainio T. Hydrometallurgy, 2014, 142, 84. 12 Itam Z, Beddu S, Mohammad D, et al. Materials Today: Proceedings, 2019, 17, 727. 13 Lu X W, Peng J B. Mining, Metallurgy and Exploration, 2018, 27, 54. 14 Guo X Y, Tian Q H. High purity metal materials, Metallurgical Industry Press, China, 2010. 15 Yang L, Zhu M L, Weng W, et al. Materials Reports, 2024, 38 (10), 113(in Chinese). 杨蕾, 朱茂兰, 翁威, 等. 材料导报, 2024, 38 (10), 113. 16 Xu Y, Li J, Liu L. Procedia Environmental Sciences, 2016, 31, 162. 17 Ma Y F. World Nonferrous Metals, 2010(9), 70(in Chinese). 马永峰. 世界有色金属, 2010(9), 70. 18 Wei Q F, Zhang Q X. Non-Ferrous Smelting, 2003, 32(3), 10(in Chinese). 魏琦峰, 张启修. 有色冶炼, 2003, 32(3), 10. 19 Antony L V M, Reddy R G. Journal of Operations Management, 2003, 55, 14. 20 Choi J Y, Kim D S. Journal of Hazardous Materials, 2003, 99(2), 147. 21 Phillips A J, Smart J S, Smith A A. Transactions of the Metallurgical Society of AIME, 1941, 143, 272. 22 Li J. XinJiangYouSe JinShu, 2014, 37(S1), 127(in Chinese). 李杰. 新疆有色金属, 2014, 37(S1), 127. 23 Zhong M L, Zhou F, Wu W H. Gold, 2020, 41(2), 62(in Chinese). 钟茂礼, 周方, 吴卫煌. 黄金, 2020, 41(2), 62. 24 Huang J. Hunan Nonferrous Metals, 1996(6), 36(in Chinese). 黄坚. 湖南有色金属, 1996(6), 36. 25 Xiao F, Zhang Y, Yong W, et al. Transactions of Nonferrous Metals Society of China, 2007, 17(5), 1069. 26 Zhou C Q. Non-Ferrous Smelting, 1986(11), 29(in Chinese). 周崇清. 有色冶炼, 1986(11), 29. 27 三宅保彦. 日本金属学会会報, 1992, 31(4), 267. 28 Zhao D J. Special-cast and Non-ferrous Alloys, 2010, 30(3), 288(in Chinese). 赵大军. 特种铸造及有色合金, 2010, 30(3), 288. 29 Du T T. Preparation of high purity copper by nitric acid system. Master's Thesis, Northeastern University, China, 2014 (in Chinese). 杜婷婷. 硝酸体系电解制备高纯铜的工艺研究. 硕士学位论文, 东北大学, 2014. 30 Cao H Z, Feng W Y, Zhang H B, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(5), 1387. 31 Zhang L, Xu Z. Journal of Cleaner Production, 2016, 127, 19. 32 Kekesi T, Mimura K, Isshiki M. Materials Transactions, JIM, 1995, 36(5), 649. 33 Zhao K N, Li X, Su D. Acta Physico-Chimica Sinica, 2020, 37(7), 2009077 (in Chinese). 赵康宁, 李潇, 苏东. 物理化学学报, 2020, 37(7), 2009077. 34 Li T Q, Pang B, Qu M Y. Nonferrous Metals Engineering, 2016, 6(4), 6(in Chinese). 李廷取, 庞勃, 曲明洋. 有色金属工程, 2016, 6(4), 6. 35 Ke L, Peng Y L, Zheng Y J. Mining and Metallurgical Engineering, 2013, 33(1), 74(in Chinese). 柯浪, 彭映林, 郑雅杰. 矿冶工程, 2013, 33(1), 74. 36 Guo X Y, Tian Q H. High-purity metal material, Metallurgical Industry Press, China, 2010 (in Chinese). 郭学益, 田庆华. 高纯金属材料, 冶金工业出版社, 2010. 37 Mei X Y, Ma W H, Lyu G Q, et al. Foundry Technology, 2010, 31(11), 1432 (in Chinese). 梅向阳, 马文会, 吕国强, 等. 铸造技术, 2010, 31(11), 1432. 38 Curtolo D C, Friedrich S, Friedrich B. Journal of Crystallization Process and Technology, 2017, 7(4), 65. 39 Mo W, Dong H C, Wu X N. Titanium smelting, Metallurgical Industry Press, China, 2011, pp.7 (in Chinese). 莫畏, 董鸿超, 吴享南. 钛冶炼, 冶金工业出版社, 2011, pp.7. 40 Guo X, Zhou Y, Zha G, et al. Separation and Purification Technology, 2020, 242, 116787. 41 Dai Y N. Non-ferrous vacuum metallurgy, Metallurgical Industry Press, China, 1998, pp.125. 42 Fu Y B, Cui J, Lu Y P, et al. Chinese Journal of Vacuum Science and Technology, 2013, 33(1), 77(in Chinese). 付亚波, 崔静, 卢一平, 等. 真空科学与技术学报, 2013, 33(1), 77. 43 Fu Y B, Chen J, Liu N, et al. Rare Metal Materials and Engineering, 2011, 40(S2), 103(in Chinese). 付亚波, 陈洁, 刘宁, 等. 稀有金属材料与工程, 2011, 40(S2), 103. 44 Chen W D, Wang C G, Wang G Q. World Nonferrous Metals, 2017(21), 4 (in Chinese). 陈卫东, 王崇国, 王国强. 世界有色金属, 2017(21), 4. 45 Xu S, Song B Y, Jiang W L, et al. Chinese Journal of Vacuum Science and Technology, 2015, 35(8), 72 (in Chinese). 许帅, 宋冰宜, 蒋文龙, 等. 真空科学与技术学报, 2015, 35(8), 72. 46 Richards J L. Journal of Applied Physics, 1960, 31(3), 600. 47 Zhang J Y. Light alloy fabrication technology, The Encyclopedia of China Press, China, 2001, pp.12(in Chinese). 张君尧. 轻合金加工技术, 《中国冶金百科全书》金属材料卷出版. 2001, pp.12. 48 Tan Y, Shi S. Aeronautical Manufacturing Technology, 2018, 61(23-24), 28(in Chinese). 谭毅, 石爽. 航空制造技术, 2018, 61(23-24), 28. 49 Wu H, Yan H, Wang D. Chemical Engineer, 2001(3), 16(in Chinese). 吴洪, 阎红, 王丹. 化学工程师, 2001(3), 16. 50 Yao X, Furuya K, Nakamura Y, et al. Journal of Materials Research, 1995, 10, 3003. 51 Li D S. Study on preparation of high purity indium by vacuum distillation-regional melting method. Master's Thesis, Kunming University of Science and Technology, China, 2012 (in Chinese). 李冬生. 真空蒸馏-区域熔炼联合法制备高纯铟的研究. 硕士学位论文, 昆明理工大学, 2012. 52 Li W L, Luo Y H. Mining and Metallurgy, 2010, 2(19), 57(in Chinese). 李文良, 罗远辉. 矿冶, 2010, 2(19), 57. 53 Wan H L. Study on migration behavior of impurity element in regional melting and pure aluminum. Ph.D. Thesis, Kunming University of Science and Technology, China, 2021 (in Chinese). 万贺利. 区域熔炼提纯铝过程中杂质元素迁移行为研究. 博士学位论文, 昆明理工大学, 2021. 54 Zhou Z H, Mo H B, Zeng D M. Chinese Journal of Rare Metals, 2004, 28(4), 807. 55 Pfann W G. Techniques of zone melting and crystal growing, Academic Press, US, 1957, pp.423. 56 新藤裕一朗, 竹本幸一. 日本专利, TW200643192, 2006. 57 《Interpretation of metallurgical Nouns》 writing group, Metallurgical terms explanation: Metallurgical Industry Press, China, 1975 (in Chinese). 《冶金名词解释》编写组. 冶金名词解释, 冶金工业出版社, 1975. 58 Zhang Z Q, Zhang J, Liu Q. Materials Reports, 2011, 25(8), 12(in Chinese). 张志清, 张静, 刘庆. 材料导报, 2011, 25(8), 12. 59 Pfann W G. Metallurgical Reviews, 1957, 2(1), 29. 60 Kurosaka A, Tominaga H, Takayama T, et al. Advances in Cryogenic Engineering Materials: Part A, 1990, 36, 749. 61 Mei P R, Moreira S P, Cardoso E, et al. Solar Energy Materials and Solar Cells, 2012, 98, 233. 62 Rozin K M, Vigdorovich V N, Krestovnikov A N. American Meteorological Society, 1961, 5, 56. 63 Li B, Zhang S. Metallurgical Equipment, 2015(5), 13(in Chinese). 李碚, 张森. 冶金设备, 2015(5), 13. 64 Ikeda T, Marolf N J, Snyder G J. Crystal Growth & Design, 2011, 11(9), 4183. 65 Roussopoulos G S, Rubini P A. Journal of Crystal Growth, 2004, 271(3-4), 333. 66 Yu L, Kang X, Chen L, et al. Materials (Basel), 2021, 14(8), 2064. 67 Min N B. The physical basis of crystal growth,Shanghai Science and Technology Press, China, 1982 (in Chinese). 闵乃本. 晶体生长的物理基础, 上海科学技术出版社, 1982. 68 You X, Tan Y, Cui H, et al. Materials Characterization, 2021, 173, 110925. 69 Li Q. Purification of indium by zone refining method and simulation. Master's Thesis, Guilin University of Technology, China, 2018(in Chinese). 李情. 区域熔炼提纯铟及仿真模拟. 硕士学位论文, 桂林理工大学, 2018. 70 Chen L N. Research on purification of indium by oxidation refining-zone refining combined method. Master's Thesis, Guilin University of Technology, China, 2020 (in Chinese). 陈罗娜. 氧化精炼-区域熔炼联合法提纯铟的研究. 硕士学位论文, 桂林理工大学, 2020. 71 Tan Y. Simulation analysis of contact heating indium metal regional melting device and temperature field. Master's Thesis, Guilin University of Technology, China, 2017 (in Chinese). 谭杨. 接触加热式金属铟区域熔炼装置及温度场模拟分析. 硕士学位论文, 桂林理工大学, 2017. 72 Zhang X, Li H Q, Zhao J Y, et al. Special-cast and Non-ferrous Alloys, 2015, 35(4), 446(in Chinese). 张曦, 李华清, 赵解扬, 等. 特种铸造及有色合金, 2015, 35(4), 446. 73 Su H, Shen Z, Ren Q, et al. Ceramics International, 2020, 46(11), 18750. 74 Spim Jr J A, Bernadou M J S, Garcia A. Journal of Alloys and Compounds, 2000, 298(1-2), 299. 75 Huang J, Ren Q B, Hu Z Q, et al. Rare Metal Materials and Engineering, 2017, 46(12), 3633. 76 Si P Z, Fan Z G. Low Temperature and Superconductivity, 2000, 20(3), 25(in Chinese). 司平占, 樊占国. 低温与超导, 2000, 20(3), 25. 77 Zhang X X, Friedrich S, Friedrich B. Journal of Crystallization Process and Technology, 2018, 8(1), 33. 78 Tian L S, Yin Y X, Hu Z F, et al. Mining and Metallurgy, 2014, 23(2), 49(in Chinese). 田丽森, 尹延西, 胡志方, 等. 矿冶, 2014, 23(2), 49. 79 Shi J, Luo C, Wang H S, et al. Rare Metal Materials and Engineering, 2010, 39(S1), 418(in Chinese). 石洁, 罗超, 王怀胜, 等. 稀有金属材料与工程, 2010, 39(S1), 418. 80 Wu J. Research on the recrystallization behavior of high-purity copper and its grain refinement process. Master's Thesis, Harbin Institute of Technology, China, 2018 (in Chinese). 吴旌. 高纯铜再结晶行为及其晶粒细化工艺研究. 硕士学位论文, 哈尔滨工业大学, 2018. 81 山田義人. 日本金属学会誌, 1964, 28(3), 149. 82 Yeh H M, Yeh W H. Separation Science and Technology, 1979, 14(9), 795. 83 Chen J, Fu Y B, Liu N, et al. Chinese Journal of Vacuum Science and Technology, 2011, 31(4), 495(in Chinese). 陈洁, 付亚波, 刘宁, 等. 真空科学与技术学报, 2011, 31(4), 495. 84 Sun C X, Zhao C J, Zhang W X, et al. Proceedings of the 4th annual conference of electron beam ion beam professional committee of China electrotechnical society and the 2nd annual conference of electron beam welding professional committee of Chinese society of electronics. Guangxi, 1991, pp.175(in Chinese). 孙从熙, 赵昌吉, 张万祥, 等. 中国电工技术学会电子束离子束专业委员会第四届电子束离子束学术年会暨中国电子学会焊接专业委员会第二届电子束焊接学术年会论文集. 广西, 1991, pp.175. 85 Zhao Q, Li S Y, Guo Z N, et al. Materials Reports, 2024, 38 (14), 41(in Chinese). 赵强, 李淑英, 郭智楠, 等. 材料导报, 2024, 38(14), 41. 86 Liu L H, Tan D S. Shanghai Nonferrous Metals, 2004(2), 60(in Chinese). 刘林海, 谈定生. 上海有色金属, 2004(2), 60. 87 Zhang H, Zhao J, Xu J, et al. Russian Journal of Non-Ferrous Metals, 2020, 61, 9. 88 Pfann W G. Journal of Operations Management, 1952, 4(7), 747. 89 Cheung N, Bertazzoli R, Garcia A. Journal of Crystal Growth, 2008, 310(6), 1274. 90 Rodway G H, Hunt J D. Journal of Crystal Growth, 1989, 97(3-4), 680. 91 Pfann W G. Science, 1962, 135(3509), 1101. 92 Ding L, Cheng J, Wang T, et al. Minerals Engineering, 2019, 135, 21. 93 Li W. Study on vacuum distillation and zinc removal in secondary resources of copper-nickel-zinc alloy. Master's Thesis, Kunming University of Science and Technology, China, 2016 (in Chinese). 李玮. 铜镍锌合金二次资源真空蒸馏脱除锌的研究. 硕士学位论文, 昆明理工大学, 2016. 94 Liu F S. Study on volatile law of silver in vacuum alloy. Master's Thesis, Kunming University of Science and Technology, China, 2017 (in Chinese). 刘繁松. 真空蒸馏铜银合金中银挥发规律的研究. 硕士学位论文, 昆明理工大学, 2017. |
|
|
|