INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Gate Dielectric Layer for Flexible Oxide Thin-Film Transistors |
TAN Haixing1, LIN Jianrong1, HUANG Peiyuan1, PENG Jingyi1, LIU Si1, CHEN Jianwen1, XU Hua2, XIAO Peng1,*
|
1 Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, Guangdong, China 2 Guangzhou Newvision Optoelectronic Technology Co., Ltd., Guangzhou 510530, China |
|
|
Abstract Flexible oxide thin-film transistors (TFTs) are widely used in lots of fields such as flexible organic light-emitting diode (OLED) displays, flexible sensors and bionic synapses, and so on, for its advantages of high mobility, large on/off current ratio, good device uniformity, good flexibility, light and thin. The gate dielectric layer is crucial for flexible oxide TFTs. It not only affects the basic electrical performance of the device, but also has a significant impact on the electrical stability under bias or light stress. Therefore, the raw and preparation process of gate dielectric layer is the key to achieving high-performance flexible oxide TFTs. In this work, the research progress of gate dielectric layer for flexible oxide TFTs was reviewed. Firstly, several typical film preparation techniques were introduced. Then, gate dielectric materials for flexible oxide TFTs were described in detail, including inorganic high dielectric constant (high-K) dielectric materials such as zirconium oxide (ZrO2), hafnium oxide (HfO2) and aluminum oxide (Al2O3), organic dielectric materials such as polyvinyl pyrrolidone (PVP), polymethyl methacrylate (PMMA) and polyvinyl alcohol (PVA), and double electric layer electrolyte dielectric materials. The advantages and disadvantages of these dielectric materials were discussed. Finally, it summarized the technical characteristics and applications of gate dielectric layer for flexible oxide TFTs and prospected the future development and research of gate dielectric layer technologies.
|
Published: 10 December 2024
Online: 2024-12-10
|
|
Fund:Guangdong Science and Technology Plan (2022A0505020022), Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology (2020B1212030010), and National Natural Science Foundation of China (61804029). |
|
|
1 Nomura K, Ohta H, Takagi A, et al. Nature, 2004, 432(7016), 488. 2 Stewart M, Howell R S, Pires L, et al. IEEE Transactions on Electron Devices, 2001, 48(5), 845. 3 Park J S, Maeng W J, Kim H S, et al. Thin Solid Films, 2012, 520(6), 1679. 4 Fortunato E, Barquinha P, Martins R. Advanced Materials, 2012, 24(22), 2945. 5 Rembert T, Battaglia C, Anders A, et al. Advanced Materials, 2015, 27(40), 6090. 6 Cho J, Choi P, Lee N, et al. Journal of Nanoscience and Nanotechnology, 2016, 16(10), 10380. 7 Lee S, Seo M H. Chemistry-A European Journal, 2018, 24(66), 17419. 8 Xie Y T, Ouyang S H, Wang D P, et al. Journal of Materials Science, 2020, 55(33), 15908. 9 Zhong Y X, Zhou S X, Yao R H, et al. Chinese Journal of Luminescence, 2018, 39(2), 214 (in Chinese). 钟云肖, 周尚雄, 姚日晖, 等. 发光学报, 2018, 39(2), 214. 10 Lin J R, Du Y Q, Liang R B, et al. Materials Research and Application, 2022, 16(3), 353 (in Chinese). 林剑荣, 杜永权, 梁瑞斌, 等. 材料研究与应用, 2022, 16(3), 353. 11 Zhang L R, Xiao W P, Xie F, et al. Materials Research and Application, 2022, 16(5), 718 (in Chinese). 张立荣, 肖文平, 谢飞, 等. 材料研究与应用, 2022, 16(5), 718. 12 Gao Z W, Xu W, Yao R H, et al. Chinese Journal of Liquid Crystals and Displays, 2022, 37(8), 948 (in Chinese). 高执文, 许伟, 姚日晖, 等. 液晶与显示, 2022, 37(8), 948. 13 Wang D W. Chinese Journal of Liquid Crystals and Displays, 2022, 37(6), 709 (in Chinese). 王大巍. 液晶与显示, 2022, 37(6), 709. 14 Xie Y T, Cai K L, Chen P L. Chinese Journal of Lasers, 2022, 49(7), 29 (in Chinese). 谢应涛, 蔡坤林, 陈鹏龙, 等. 中国激光, 2022, 49(7), 29. 15 Aoi T, Oka N, Sato Y, et al. Thin Solid Films, 2010, 518(11), 3004. 16 Moon Y K, Lee S, Kim D H, et al. Japanese Journal of Applied Physics, 2009, 48(3), 031301. 17 Li H, Yang X T, Wang Y J, et al. Chinese Journal of Liquid Crystals and Displays, 2022, 37(11), 1439 (in Chinese). 李慧, 杨小天, 王艳杰, 等. 液晶与显示, 2022, 37(11), 1439. 18 Meng B, Gao X H, Fu Y. Journal of Jilin Jianzhu University, 2022, 39(1), 80 (in Chinese). 孟冰, 高晓红, 付钰, 等. 吉林建筑大学学报, 2022, 39(1), 80. 19 Wang C, Liu Y R, Peng Q, et al. Chinese Journal of Luminescence, 2022, 43(1), 129 (in Chinese). 王聪, 刘玉荣, 彭强, 等. 发光学报, 2022, 43(1), 129. 20 Yao R H, Zheng Z K, Zeng Y, et al. Acta Optica Sinica, 2017, 37(3), 374 (in Chinese). 姚日晖, 郑泽科, 曾勇, 等. 光学学报, 2017, 37(3), 374. 21 Liu G C, Zhang L, Xie H T, et al. Chinese Journal of Vacuum Science and Technology, 2018, 38(1), 43 (in Chinese). 刘国超, 张磊, 解海艇, 等. 真空科学与技术学报, 2018, 38(1), 43. 22 Li C, Wang C, Yang F, et al. Electrical Appliances, 2022(8), 92 (in Chinese). 李超, 王超, 杨帆, 等. 日用电器, 2022(8), 92. 23 Kukli K, Kemell M, Köykkä J, et al. Thin Solid Films, 2015, 589, 597. 24 Chen X, Zhang G Z, Wan J X, et al. Advanced Electronic Materials, 2018, 5(2), 1800583. 25 Yu M C, Ruan D B, Liu P T, et al. IEEE Transactions on Nanotechnology, 2020, 19, 481. 26 Yue L, Meng F X, Ren D S. Europhysics Letters, 2020, 131(6), 67002. 27 Bukke R N, Saha J K, Mude N N, et al. ACS Applied Materials & Interfaces, 2020, 12(31), 35164. 28 Wu B Z, Liao R, Liu Y R. Semiconductor Technology, 2018, 43(5), 321 (in Chinese). 吴宝仔, 廖荣, 刘玉荣. 半导体技术, 2018, 43(5), 321. 29 Divya M, Pradhan J R, Priyadarsini S S, et al. Small, 2022, 18(32), 2202891. 30 Liu H Y, Liao Y J, Wu H Y. Ceramics International, 2022, 48(19), 28790. 31 Wang C P, Tang D, Han S, et al. Physica Status Solidi A-Applications and Materials Science, 2018, 215(11), 1700821. 32 Park S J, Ha T J. Journal of Alloys and Compounds, 2022, 912, 165228. 33 Xia G D, Wang S M. Ceramics International, 2019, 45(13), 16482. 34 Sarkar S K, Maji D, Khan J A, et al. ACS Applied Electronic Materials, 2022, 4(5), 2442. 35 Xie J A, Zhu Z N, Tao H, et al. Coatings, 2020, 10(7), 698. 36 Wang S M, Xia G D. Ceramics International, 2019, 45(17), 23666. 37 Li L W, Chen Y Q, Yin X R, et al. Nanotechnology, 2017, 28(48), 485707. 38 Cai W S, Brownless J, Zhang J W, et al. ACS Applied Electronic Materials, 2019, 1(8), 1581. 39 Hu W T, Yang F, Yang X T. Chinese Journal of Liquid Crystals and Displays, 2022, 37(10), 1310 (in Chinese). 胡伟涛, 杨帆, 杨小天, 等. 液晶与显示, 2022, 37(10), 1310. 40 Shi Q W, Aziz I, Ciou J H, et al. Nano-Micro Letters, 2022, 14(1), 195. 41 Bhalerao S R, Lupo D, Berger P R. Materials Science in Semiconductor Processing, 2022, 139, 106354. 42 Sun Y L, Yang T, Chen K, et al. Laser & Optoelectronics Progress, 2022, 59(19), 397 (in Chinese). 孙云龙, 杨厅, 陈铠, 等. 激光与光电子学进展, 2022, 59(19), 397. 43 Cai Q S, Yang F, Wang C, et al. Chinese Journal of Liquid Crystals and Displays, 2022, 37(12), 1546 (in Chinese). 蔡乾顺, 杨帆, 王超, 等. 液晶与显示, 2022, 37(12), 1546. 44 Hill R M. Philosophical Magazine, 1971, 23(181), 59. 45 Bolat S, Fuchs P, Knobelspies S, et al. Advanced Electronic Materials, 2019, 5(6), 1800843. 46 Tao H, Luo H D, Ning H L, et al. Chinese Journal of Liquid Crystals and Displays, 2021, 36(5), 633 (in Chinese). 陶洪, 罗浩德, 宁洪龙, 等. 液晶与显示, 2021, 36(5), 633. 47 Lai H C, Pei Z, Jian J R, et al. Applied Physics Letters, 2014, 105(3), 033510. 48 Najafi-Ashtiani H, Tavousi A, Ramzannezhad A, et al. Journal of Electronic Materials, 2021, 50(4), 2496. 49 Yang Y H, Li J, Chen Q, et al. IEEE Electron Device Letters, 2020, 41(3), 381. 50 Jeong J W, Hwang H S, Choi D, et al. Micromachines, 2020, 11(3), 264. 51 Hur J S, Kim J O, Kim H A, et al. ACS Applied Materials & Interfaces, 2019, 11(24), 21675. 52 Ning H L, Liang Z H, Fu X, et al. Organic Electronics, 2022, 100, 106383. 53 Herbei E E, Busila M, Alexandru P, et al. Materiale Plastice, 2022, 59(1), 1. 54 Wang X Y, Gao Y, Liu Z H, et al. IEEE Electron Device Letters, 2019, 40(2), 224. 55 Yang J T, Ge C, Du J Y, et al. Advanced Materials, 2018, 30(34), 1801548. 56 Shi J L, Jie J S, Deng W, et al. Advanced Materials, 2022, 34(18), 2200380. 57 Dai C Q, Huo C H, Qi S C, e t al. International Journal of Nanomedicine, 2020, 15, 8037. 58 Wang C, Liu Y R, Peng Q, et al. Chinese Journal of Luminescence, 2022, 43(1), 129 (in Chinese). 王聪, 刘玉荣, 彭强, 等. 发光学报, 2022, 43(1), 129. 59 Liang D K, Chen Y H, Xu W, et al. Acta Physica Sinica, 2018, 67(23), 225 (in Chinese). 梁定康, 陈义豪, 徐威, 等. 物理学报, 2018, 67(23), 225. 60 Yu F, Zhu L Q, Gao W T, et al. ACS Applied Materials & Interfaces, 2018, 10(19), 16881. 61 Jiang S S, He G, Wang W H, et al. Nanomaterials, 2022, 12(18), 3243. 62 Min J G, Cho W J. Molecules, 2021, 26(23), 7233. 63 Guo L Q, Xu C, Zhou H L, et al. Organic Electronics, 2020, 77, 105517. 64 Guo L Q, Xu G, Xu C, et al. Organic Electronics, 2021, 93, 106109. 65 Hu W N, Jiang J, Xie D D, et al. Nanoscale, 2018, 10(31), 14893. |
|
|
|