POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Review and Evaluation of S-N Curve Models for Composite Laminates |
FENG Weisen1, YANG Chengpeng1,*, JIA Fei2
|
1 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China 2 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China |
|
|
Abstract S-N curve model is an important basis for analyzing and predicting the fatigue life of materials and their structures. This paper presents a comprehensive review of S-N models for composite laminates, and categorizes them into empirical models from data fitting conception and semi-empirical models that consider damage mechanism. It is found that stress ratio is a key loading parameter to be considered in S-N model, while there are fewer semi-empirical models and more scarce empirical models that include stress ratio. In order to verify and evaluate those typical S-N models, five basic criteria for model evaluation were suggested, and eight sets of fatigue data were selected from two material systems with different laminated structures under different stress ratios. The results indicate that the Weibull model, Wu model, and Epaarachchi model can exhibit stronger fitting ability under various fatigue influencing factors with high overall fitting accuracy, and the Weibull model and Wu model also have the ability to fit the entire region of the S-N curve. The Basquin model, although often used in theory and engineering, is not ideal in terms of its accuracy. Compared with those models without stress ratio, the characterization accuracy of the model with stress ratio is usually poor and its scope of application is limited. Meanwhile, compared with semi-empirical model, the empirical model is easier to meet the boundary conditions, has a better fit to different forms of S-N curves, is more adaptable, and has a wider scope of application.
|
Published: 25 November 2024
Online: 2024-11-22
|
|
Fund:National Natural Science Foundation of China (12072274). |
|
|
1 Du S Y. Acta Materiae Compositae Sinica, 2007, 24(1), 1(in Chinese). 杜善义. 复合材料学报, 2007, 24(1), 1. 2 Cheng X Q, Du X Y. Journal of Beijing University of Aeronautics And Astronautics, 2021, 47(7), 1311(in Chinese). 程小全, 杜晓渊. 北京航空航天大学学报, 2021, 47(7), 1311. 3 Zhou S, Yan L, Fu K K, et al. Thin-Walled Structures, 2021, 158, 107173. 4 Degrieck J, Van P W. Applied Mechanics Reviews, 2001, 54(4), 279. 5 Zhao S, Zhang J W. Acta Materiae Compositae Sinica, 2020, 37(10), 2473(in Chinese). 赵晟, 张继文. 复合材料学报, 2020, 37(10), 2473. 6 Mao H, Mahadevan S. Composite Structures, 2002, 58, 405. 7 Hwang W, Han K S. Journal of Composite Materials, 1986, 20(3), 125. 8 Gao Q L, Xin H H, Mosallam A. Lecture Notes on Data Engineering and Communications Technologies, 2020, 110, 464. 9 Sendeckyj G P. In: 1979 Symposium on Test Methods and Design Allowables for Fibrous Composites. Dearborn, 1981, pp.245. 10 Freire Júnior R C S, Belísio A S. Composites Part B: Engineering, 2014, 56, 582. 11 Wöhler A. Zeitschrift Bauwesen, 1870, 20, 73. 12 Stromeyer C E. Proceedings of the Royal Society A, 1914, 90, 411. 13 Kohout J, Věchet S. International Journal of Fatigue, 2001, 23(2), 175. 14 Ye L. Composites Science and Technology, 1989, 36, 339. 15 Arutyunyan A R. Doklady Physics, 2019, 64(10), 394. 16 Read P J C L, Shenoi R A. Marine Structures, 1995, 8(3), 257. 17 Degrieck J, Paepegen W V. Applied Mechanics Reviews, 2001, 54(4), 279. 18 Barbosa J F, Correia J A, Júnior R F, et al. Advances in Mechanical Engineering, 2019, 11(8), 1. 19 Vanhari A K, Fagan E, Goggins J. Composite Structures, 2022, 287, 115384. 20 Burhan I, Kim H S. Journal of Composites Science, 2018, 2(3), 3. 21 Zhang M. Research on fatigue behavior and mechanism of FV520B in very high cycle regime. Ph. D. Thesis, Shandong University, China, 2015(in Chinese). 张明. 离心压缩机叶轮材料FV520B超高周疲劳行为与机理研究. 博士学位论文, 山东大学, 2015. 22 Epaarachchi J A, Clausen P D. Composites Part A: Applied Science and Manufacturing, 2003, 34(4), 313. 23 Noël M. Construction and Building Materials, 2019, 206, 279. 24 Zhai H J, Yao W X. Advances in Mechanics, 2002, 32(1), 69(in Chinese). 翟洪军, 姚卫星. 力学进展, 2002, 32(1), 69. 25 Basquin O H. Proceedings-American Society for Testing Materials, 1910, 10, 625. 26 Weibull W. Fatigue and Fracture Metals, 1952, 4, 182. 27 Harik V M, klinger J R, Bogetti T A. International Journal of Fatigue, 2002, 24(2-4), 455. 28 Revuelta D, Cuartero J, Miravete A, et al. Composite Structures, 2000, 48(1), 183. 29 Hwang W, Han K S. Journal of Composite Materials, 1986, 20(2), 154. 30 Han K S, Hwang W. Acta Materiae Compositae Sinica, 1987, 4(1), 16(in Chinese). 韩京燮, 黄云峰. 复合材料学报, 1987, 4(1), 16. 31 Kim H S, Zhang J. Journal of Reinforced Plastics and Composites, 2001, 20(10), 834. 32 Kim H S, Huang S. Journal of Composite Science, 2021, 5(3), 76. 33 Wu F Q, Yao W X. Journal of Mechanical Strength, 2004, 26(S), 127(in Chinese). 吴富强, 姚卫星. 机械强度, 2004, 26(S), 127. 34 Wu F Q, Yao W X. Chinese Journal of Aeronautics, 2008, 21(3), 241. 35 Mu P G, Wan X P, Zhao M Y. Key Engineering Materials, 2011, 462-463, 484. 36 Mivehchi H, Varvani-Farahani A. Procedia Engineering, 2010, 2, 2011. 37 Huang J, Garnier C, Pastor M L, et al. MATEC Web of Conferences, 2018, 165, 07008. 38 Liao D, Zhu S P, Keshtegar B, et al. International Journal of Mechanical Sciences, 2020, 181, 105685. 39 Song L K, Bai G C, Fei C W. Aerospace Science and Technology, 2019, 95, 106539. 40 Zhu S P, Liu Q, Zhou J, et al. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41(6), 1291. 41 Ma Q, An Z W, Bai X Z, et al. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(21), 5665. 42 Gao J X, Xu R X, Wu Z F, et al. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(9), 4862. 43 Jessen S M, Plumtree A. Composites, 1991, 22(3), 181. 44 Flore D, Wegener K. International Journal of Fatigue, 2016, 82, 689. 45 Poursartip A. Composites Science and Technology, 1986, 25(3), 193. 46 Poursartip A, Beaumont P W R. Composites Science and Technology, 1986, 25(4), 283. 47 Wang S S, Suemasu H, Chim E S M. Engineering Fracture Mechanics, 1987, 21(12), 1084. 48 D'amore A, Caprino G, Stupak P, et al. Science and engineering of composite materials, 1996, 5(1), 1. 49 Seghini M C, Touchard F, Sarasini F, et al. International Journal of Fatigue, 2020, 139, 105800. 50 Cormier L, Joncas S. Journal of Composite Materials, 2018, 52(2), 207. 51 Deng Y C, Zhang Y N, Li Z N. Aircraft Design, 2001(3), 26(in Chinese). 邓扬晨, 章怡宁, 郦正能. 飞行设计, 2001(3), 26. 52 Roohollah S, Anastasios P V, Thomas K. Composites Part A: Applied Science and Manufacturing, 2012, 43(3), 445. 53 Hu J Q, Ji C M, Chen S, et al. International Journal of Applied Mechanics, 2020, 12(9), 2050104. 54 Feng Y, Ma B, Zhang T, et al. Applied Composite Materials, 2021, 28(1), 129. 55 Yang H S, Qiao P, Wolcott M P. Polymer Composites, 2010, 31(4), 553. 56 Jin H B. Fiber Reinforced Plastics/Composites, 1999, 6(6), 18(in Chinese). 金宏彬. 玻璃钢/复合材料, 1999, 6(6), 18. 57 Zhang W J, Zhou Z G, Zhang B M, et al. Materials and Design, 2015, 66, 77. 58 Wyzgoski M G, Novak G E. Journal of Materials Science, 2005, 40(2), 295. 59 Feng W S, Yang C P, Jia F. Materials Reports, 2024, 38(9), 22100058(in Chinese). 冯炜森, 杨成鹏, 贾斐. 材料导报, 2024, 38(9), 22100058. 60 Passipoularidis V A, Philippidis T P, Brondsted P. International Journal of Fatigue, 2011, 33(2), 132. 61 Kensche C W, Stuttgart D. Technical Soaring, 1995, 19(3), 69. 62 Xiao X R. Journal of Composites Materials, 1999, 33(12), 1141. 63 Gathercole N, Reiter H, Adam T, et al. International Journal of Fatigue, 1994, 16(8), 523. 64 Kuang J X, Zhang C T, Hao Z M. Journal of Vibration And Shock, 2020, 39(9), 181(in Chinese). 旷金鑫, 张春涛, 郝志明. 振动与冲击, 2020, 39(9), 181. 65 Gao D Y, Yao W X, Wu T. Journal of Mechanical Strength, 2018, 40(6), 1451(in Chinese). 高代阳, 姚卫星, 吴涛. 机械强度, 2018, 40(6), 1451. 66 Fotouh A, Wolodko J D, Composites: Part B, 2014, 62, 175. 67 Konur O, Matthews F L. Composites, 1989, 20(4), 317. 68 Kawai M, Itoh N. Journal of Composite Materials, 2014, 48(5), 571. 69 Yang Z Q. Research on fatigue behavior of glass fiber reinforced polymer composites. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2008(in Chinese). 杨忠清. 玻璃纤维增强树脂基复合材料疲劳行为研究. 博士学位论文, 南京航空航天大学, 2008. |
|
|
|