METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Effect of Heat Treatment on the Microstructure and Mechanical Properties of FeSi Alloy Powder/Organosilicone Resin Microwave Absorbing Coatings |
ZHONG Zhentao1, HONG Sen1, DENG Yan1, HE Zeqian1, DAI Cuiying1,2, MAO Weiguo1,2,*, ZHANG Youwei3,*, LIU Pinggui3
|
1 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China 2 School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410014, China 3 Stealth & Coatings Institute, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China |
|
|
Abstract It is important to study the microstructure and mechanical properties of FeSi alloy powder/silicone resinmicrowave absorbing coatings under the simulated service temperature conditions to optimize the coating performances and predict their service life. In this work, the microwave absorbing coatings were prepared by air-cooled spraying process, and they were subjected to 10, 20, 30, 40 and 50 thermal cycles at 400 ℃. The results of thermogravimetric analysis showed that the mass loss of microwave absorbing coating at 400 ℃ was only 0.12%. It meant that the coating had good heat resistance and stable morphological structure. With the increase of thermal cycles, the surface hardness of the coating increased from 17.32HV1±0.57HV1 at room temperature to 34.01HV1±0.75HV1 after 10 cycles. When thermal cycles continued to increase, the surface hardness of the coating stabilized. The bonding strength of the microwave absorbing coating gradually decreased with the increase in thermal cycles, decreasing to (1.95±0.60) MPa after 40 thermal cycles. The main reasons may be the oxidative cross-linking reaction of the coating and the accumulated thermal stress due to mismatch, which damaged the mechanical properties of the microwave absorbing coatings during thermal cycling.
|
Published: 25 October 2024
Online: 2024-11-05
|
|
Fund:National Science and Technology Major Project (J2019-Ⅵ-0017-0132, J2022-Ⅵ-0008-0039), National Key Research and Development Program of China (2021YFB3702304-4). |
|
|
1 Ma C S, Yu W B, Ma G Z, et al. Critical Reviews in Solid State and Materials Sciences, 2023, 46(6), 726. 2 Chen Z W, Fan X M, Huang X X, et al. Advanced Ceramics, 2020, 41(Z1), 1(in Chinese). 陈政伟, 范晓孟, 黄小萧, 等. 现代技术陶瓷, 2020, 41(Z1), 1. 3 Jayalakshmi C, Inamdar A, Anand A, et al. Journal of Applied Polymer Science, 2019, 136(14), 47241. 4 Zheng W, Ye W X, Yang P A, et al. Molecules, 2022, 27(13), 4117. 5 Green M, Chen X B. Journal of Materiomics, 2019, 5(4), 503. 6 Kumar P, Narayan Maiti U, Sikdar A, et al. Polymer Reviews, 2019, 59(4), 687. 7 Wu C B, Li W, Gao D H, et al. Polymer-Plastics Technology and Engineering, 2009, 48(10), 1094. 8 Zhou Y Y, Zhou W C, Qing Y C, et al. Journal of Magnetism and Magnetic Materials, 2015, 374, 345. 9 Houbi A, Aldashevich Z A, Atassi Y, et al. Journal of Magnetism and Magnetic Materials, 2021, 529, 167839. 10 Qing Y C, Zhou W C, Luo F, et al. Journal of Magnetism and Magnetic Materials, 2009, 321(1), 25. 11 Ren Z, Zhou W, Qing Y, et al. Journal of the European Ceramic Society, 2021, 41(15), 7560. 12 Huang Y, Wu D, Chen M, et al. Carbon, 2021, 177, 79. 13 Wang L, Long F L, Chen Y, et al. Journal of the American Ceramic Society, 2022, 105(6), 4171. 14 Xia C, Peng Y D, Yi Y, et al. Journal of Magnetism and Magnetic Materials, 2019, 474, 424. 15 Huang H H, Zhang R, Sun H B, et al. Journal of Alloys and Compounds, 2023, 947, 169460. 16 Xia C, Peng Y D, Yi X W, et al. Journal of Non-Crystalline Solids, 2021, 559, 120673. 17 Wu X J, Chen C G, Hao J J, et al. Journal of Superconductivity and Novel Magnetism, 2020, 33, 1889. 18 Karamanolevski P, Bužarovska A, Bogoeva-Gaceva G. Silicon, 2018, 10, 2915. 19 Ling Y Q, Luo J M, Heng Z G, et al. Reactive and Functional Polymers, 2020, 157, 104742. 20 Yang Z Z, Feng L, Diao S, et al. Thermochimica Acta, 2011, 521(1-2), 170. 21 Chen L. Prepartion and properties of high temperature resistant silicone coating. Master’s Thesis, Beijing University of Chemical Technology, China, 2021 (in Chinese). 陈磊. 耐高温有机硅涂层的制备和性能研究. 硕士学位论文, 北京化工大学, 2021. 22 Hsiang H I, Wang S K, Chen C C. Journal of Magnetism and Magnetic Materials, 2020, 514, 167151. 23 Xu Y Y, Long J, Zhang R Z, et al. Polymer Degradation and Stability, 2020, 174, 109082. 24 Zhang W C, Camino G, Yang R J. Progress in Polymer Science, 2017, 67, 77. 25 Fan X H, Li F R, Yi J G, et al. China Synthetic Resin and Plastics, 2021, 38(6), 5(in Chinese). 范相虎, 李丰瑞, 易俊刚, 等. 合成树脂及塑料, 2021, 38(6), 5. 26 Sun C W, Wang D, Xu C H, et al. High Performance Polymers, 2022, 34(4), 474. 27 Lin T J, Sheu H H, Lee C Y, et al. Journal of Alloys and Compounds, 2021, 867, 159132. 28 Nová K, Novák P, Průša F, et al. Metals, 2018, 9(1), 20. 29 Priese C, Töpfer J. Alloys, 2022, 1(3), 288. 30 Xiong W J, Gao X, Gui D Y, et al. Polymer Engineering & Science, 2016, 56(10), 1118. 31 Yang X F, Chen Q, Bao H Y, et al. OSA Continuum, 2018, 1(2), 542. 32 Zhou Y Y, Zhou W C, Wang H Y, et al. Journal of Polymer Research, 2015, 22, 1. 33 Shen C W, Yang H, Sun Z C, et al. Journal of Plasticity Engineering, 2007(4), 101(in Chinese). 沈昌武, 杨合, 孙志超, 等. 塑性工程学报, 2007(4), 101. 34 Liu Y, Chen Z X, Qin Y S, et al. Journal of Electronic Materials, 2020, 49, 4379. 35 Zhang Y H, Xu J F, Feng Y B, et al. Advances in Polymer Technology, 2018, 37(8), 3262. 36 Wu C B, Jin Y H, Li W, et al. High Performance Polymers, 2010, 22(8), 959. 37 Sun J T, Huang Y D, Cao H L, et al. Journal of Aeronautical Materials, 2005(1), 25 (in Chinese). 孙举涛, 黄玉东, 曹海琳, 等. 航空材料学报, 2005(1), 25. 38 Liu H D, Cao X D, He W H, et al. Jorunal of Functional Materials, 2007(7), 1045(in Chinese). 刘海定, 曹旭东, 贺文海, 等. 功能材料, 2007 (7), 1045. |
|
|
|